Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 691 - 720 of 3852

Full-Text Articles in Nanoscience and Nanotechnology

Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman Aug 2019

Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman

Dissertations

Drug nanocomposites and amorphous solid dispersions (ASDs) are two major formulation platforms used for the bioavailability enhancement of BCS Class II drugs. The major drawback of nanocomposites is their inability to attain high drug supersaturation during in vitro (<50% relative supersaturation) and in vivo dissolution. On the other hand, formulating an amorphous solid dispersion (ASD) with high drug loading (>20%) that releases drug rapidly, while generating and maintaining high supersaturation over at least three hours is challenging. The goal of this thesis is to develop a fundamental understanding of the impact of anionic surfactants–polymers on in vitro drug release from nanocomposites and ASDs, while addressing the above challenges. To achieve this goal, the following objectives are set: (1) compare griseofulvin …


Evaluating The Rheological And Tribological Behaviors Of Coconut Oil Modified With Nanoparticles As Lubricant Additives, Vicente Cortes, Javier A. Ortega Aug 2019

Evaluating The Rheological And Tribological Behaviors Of Coconut Oil Modified With Nanoparticles As Lubricant Additives, Vicente Cortes, Javier A. Ortega

Mechanical Engineering Faculty Publications and Presentations

In metal-forming processes, the use of lubricants for providing desirable tribological conditions at the tool–workpiece interface is critical to increase the material formability and prolonging tool life. Nowadays, the depletion of crude oil reserves in the world and the global concern in protecting the environment from contamination have renewed interest in developing environmentally-friendly lubricants derived from alternative sources such as vegetable oils. In the present study, the rheological and tribological behavior of coconut oil modified with nanoparticle additives was experimentally evaluated. Two different nanoparticle additives were investigated: Silicon dioxide (SiO2) and copper oxide (CuO). For the two conditions, …


Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng Aug 2019

Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng

Dissertations

Enzymatic biofuel cells (EBFCs) convert the chemical energy of biofuels, such as glucose and methanol, into electrical energy by employing enzymes as catalysts. In contrast to conventional fuel cells, EBFCs have a simple membrane-free fuel cell design due to the high catalytic specificity of the enzymes, but the power densities obtained are lower. Although the primary goal of research on EBFCs has been to develop a sustainable power source that can be directly implanted in the human body to power bio-devices, other applications such as the use of a flexible film or fuel cell patch as a wearable power source …


Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang Aug 2019

Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang

Journal of Electrochemistry

A large-scale application of fossil fuels has led to excessive emission of carbon dioxide (CO2), resulting in serious environmental issues. A promising path to reducing CO2 emissions is recycling CO2 into valuable chemicals and fuels through an electrochemical process. Herein, the redox reactions between copper (Cu) and ferric chloride (FeCl3) have been utilized to regulate the Cu surface composition and structure, aimed to improve the electrocatalytic activity toward CO2 reduction. Typically, a series of samples (named Cu-1h, Cu-2h, Cu-3h and Cu-4h) were prepared via the redox reactions for various time from 1 to …


Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu Aug 2019

Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu

Journal of Electrochemistry

Graphene nanosheets (GS) and carbon nanotubes have been considered as good catalysts candidates for applications in energy conversion and storage. However, hybrids of GS and carbon nanotubes are always formed in transition metal-based nitrogen-doped system, making the system quite complex for exploring the structure-activity relationship. To prepare the catalysts with desired species controllably, we try to adjust the outcomes with the effect of nitrogen on the growth of carbon nanotubes. In this work, a series of Fe-N co-doped carbon hybrid catalysts containing N-doped GS or hybrids of GS/bamboo carbon nanotubes (BCNTs) or BCNTs were obtained with one-step pyrolyzed method. To …


Nanogaps On Atomically Thin Materials As Non-Volatile Read/Writable Memory Devices, Douglas Robert Strachan, Abhishek Sundararajan, Mathias Joseph Boland Aug 2019

Nanogaps On Atomically Thin Materials As Non-Volatile Read/Writable Memory Devices, Douglas Robert Strachan, Abhishek Sundararajan, Mathias Joseph Boland

Physics and Astronomy Faculty Patents

The present invention relates to the presence of nanogaps across a metal dispersed over an atomically-thin material, such that the nanogap exposes the atomically-thin material. The resulting device offers an ultra-short gap with ballistic transport and demonstrated switching in the presence of a gate or dielectric material in close proximity to the channel.


Experimental Evaluation Of Self-Expandable Metallic Tracheobronchial Stents, Yanli Wang, Pengfei Dong, Jingyao Ke, Xiang Shen, Zongming Li, Kewei Ren, Xinwei Han, Linxia Gu Aug 2019

Experimental Evaluation Of Self-Expandable Metallic Tracheobronchial Stents, Yanli Wang, Pengfei Dong, Jingyao Ke, Xiang Shen, Zongming Li, Kewei Ren, Xinwei Han, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The self-expandable metallic stents have been widely used in tracheobronchial obstruction or fistulation, including the J-shaped and Y-shaped stents, named after the shape of the branch-stem junction of the stent. However, there is scarce data on the mechanical performance of these tracheobronchial stents, which is essential for optimal stent implantation. In this work, eight self-expandable metallic tracheobronchial stents in three types (i.e., straight, J-shaped, and Y-shaped), with or without cover, were characterized. The compression resistance of the stems was investigated through both compression and indentation tests. The bending resistance of the branches in the J-shaped and Y-shaped stents was assessed …


Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma Aug 2019

Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma

Department of Mechanical and Materials Engineering: Faculty Publications

In advanced fission and fusion reactors, structural materials suffer from high dose irradiation by energetic particles and are subject to severe microstructure damage. He atoms, as a byproduct of the (n) transmutation reaction, could accumulate to form deleterious cavities, which accelerate radiation-induced embrittlement, swelling and surface deterioration, ultimately degrade the service lifetime of reactor materials. Extensive studies have been performed to explore the strategies that can mitigate He ion irradiation damage. Recently, nanostructured materials have received broad attention because they contain abundant interfaces that are efficient sinks for radiation-induced defects. In this review, we summarize and analyze the current understandings …


Wave Function Engineering In Cdse/Pbs Core/Shell Nanocrystal Heterostructures, Brian Matthew Wieliczka Aug 2019

Wave Function Engineering In Cdse/Pbs Core/Shell Nanocrystal Heterostructures, Brian Matthew Wieliczka

Arts & Sciences Electronic Theses and Dissertations

Colloidal semiconducting nanocrystals hold significant potential for third generation photovoltaics as solution processable materials that can surpass the Shockley-Queisser limit through multiexciton generation. In pursuit of this goal, the synthesis and optical characterization of CdSe/PbS core/shell quantum dots is reported. The spectroscopic behavior of these particles demonstrates their potential for use in optoelectronic devices, taking advantage of wave function engineering of the electron and hole. The rock salt PbS shell grows on all sides of the underlying zinc blende CdSe quantum dot, creating a core/shell structure. With increasing shell thickness, the band edge absorption and photoluminescence transitions decrease in energy …


The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim Aug 2019

The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim

Department of Mechanical and Materials Engineering: Faculty Publications

Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue engineering and regenerative medicine, and are understood to be mechanosensitive to external mechanical environments. In recent years, increasing evidence points to nuclear envelope proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which cells can sense external mechanical environments through an intact nuclear envelope and LINC complex proteins will be briefly described. Then, …


Increasing The Functionality Of Additive Manufacturing Through Atmospheric Microplasma And Nanotechnology, Alexander Jon Ulrich Aug 2019

Increasing The Functionality Of Additive Manufacturing Through Atmospheric Microplasma And Nanotechnology, Alexander Jon Ulrich

Doctoral Dissertations

Additive Manufacturing (AM) has been changing the manufacturing landscape for the last 20 years. As the interest and demand for both polymer and metal-based 3D printing has grown, the materials and machines used have increased in capabilities. Despite the growth and advancement, there are still a large number of improvements that can be made to add functionality to 3D printers. Metal AM, a subcategory of 3D printing, has garnered much attention among industrial applications with large companies such as General Electric trying to implement the technology to increase innovative designs for motors. Some of the limitations on AM have to …


On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang Aug 2019

On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We previously reported the finding of a linear correlation between the change of energy dissipation (ΔD) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have developed a theoretical framework for assessing the ΔD-response of adhered cells. We rationalized that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is dissipated through three main processes: the interfacial friction through the dynamic restructuring (formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping by the liquid …


A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh Aug 2019

A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh

Graduate Theses and Dissertations

Nanoparticles have received much attentions due to their unique properties that makes them suitable candidates for a broad range of applications. As the size of particles decreases, their surface area-to-volume ratio would increase which is the main cause of much attention. In addition to the size, their morphologies and compositions may also play important roles for defining unique properties. Nanoparticle synthesis include both bottom-up and top-down strategies. To control the process of inorganic nanoparticles synthesis one could follow the bottom-up approach to have atom-level control over their compositions, morphologies, phases, and sizes which is the subject of this work. Due …


Organically Modified Inorganic Nanoparticles For Halochromic Ionophores And Nucleic Acids, William Johnston Aug 2019

Organically Modified Inorganic Nanoparticles For Halochromic Ionophores And Nucleic Acids, William Johnston

Doctoral Dissertations

In this dissertation, four nanoparticle reaction schemes were developed as substrates for halochromic dyes or nucleic acids. The reaction schemes include the use of two substrates: silica nanoparticles and halloysite nanotubes. The protocols can incorporate silica (SiO2) nanoparticles and halloysite aluminosilicate (AlO2SiO2) nanotubes due to the presence of silane groups on the surface of either substrate. The reaction schemes are presented along with detailed protocols which were written to facilitate both reproducibility and to serve as an aid to further study and for easy modification of the protocol to suit a researcher's needs. The data is discussed in the materials …


Thermal Interface Material, Matthew Collins Weisenberger, John Davis Craddock Jul 2019

Thermal Interface Material, Matthew Collins Weisenberger, John Davis Craddock

Center for Applied Energy Research Faculty Patents

A flexible sheet of aligned carbon nanotubes includes an array of aligned nanotubes in a free standing film form not adhered to the synthesis substrate, with a matrix infiltrated interstitially into the nanotube array with access to the nanotube tips from both the top and bottom. That is, the infiltrant is purposely limited from over-filling or coating one or both exterior top and/or bottom surfaces of the array, blocking access to the tips. A typical matrix is a polymer material.


Observations Of Shear Stress Effects On Staphylococcus Aureus Biofilm Formation, Erica Sherman, Kenneth W. Bayles, Derek Moormeir, Jennifer Endres, Timothy Wei Jul 2019

Observations Of Shear Stress Effects On Staphylococcus Aureus Biofilm Formation, Erica Sherman, Kenneth W. Bayles, Derek Moormeir, Jennifer Endres, Timothy Wei

Department of Mechanical and Materials Engineering: Faculty Publications

Staphylococcus aureus bacteria form biofilms and distinctive microcolony or “tower” structures that facilitate their ability to tolerate antibiotic treatment and to spread within the human body. The formation of microcolonies, which break off, get carried downstream, and serve to initiate biofilms in other parts of the body, is of particular interest here. It is known that flow conditions play a role in the development, dispersion, and propagation of biofilms in general. The influence of flow on microcolony formation and, ultimately, what factors lead to microcolony development are, however, not well understood. The hypothesis being examined is that microcolony structures form …


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy Jul 2019

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process …


Method For Fabrication Of A Soft-Matter Printed Circuit Board, Carmel Majidi, Tong Lu, Eric J. Markvicka Jul 2019

Method For Fabrication Of A Soft-Matter Printed Circuit Board, Carmel Majidi, Tong Lu, Eric J. Markvicka

Department of Mechanical and Materials Engineering: Faculty Publications

A fabrication process for soft - matter printed circuit boards is disclosed in which traces of liquid - phase Ga - In eutectic ( eGaIn ) are patterned with UV laser micromachining ( UVLM ) . The terminals of the elastomer - sealed LM circuit connect to the surface mounted chips through vertically aligned columns of eGaIn - coated ferromagnetic micro spheres that are embedded within an interfacial elastomer layer .


Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury Jul 2019

Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury

FIU Electronic Theses and Dissertations

Wearable biosensing has the tremendous advantage of providing point-of-care diagnosis and convenient therapy. In this research, methods to stabilize the electrochemical sensing response from detection of target biomolecules, Uric Acid (UA) and Xanthine, closely linked to wound healing, have been investigated. Different kinds of materials have been explored to address such detection from a wearable, healing platform. Electrochemical sensing modalities have been implemented in the detection of purine metabolites, UA and Xanthine, in the physiologically relevant ranges of the respective biomarkers. A correlation can be drawn between the concentrations of these bio-analytes and wound severity, thus offering probable quantitative insights …


Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt Jul 2019

Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt

Doctoral Dissertations

The self-assembly of block copolymers (BCP) into microphase separated structures is an attractive route to template and assemble functional nanoparticles (NP) into highly ordered nanocomposites and is central to the “bottom up” fabrication of future materials with tunable electronic, optical, magnetic, and mechanical properties. The optimization of the co-assembly requires an understanding of the fundamentals of phase behavior, intermolecular interactions and dynamics of the polymeric structure. Rheology is a novel characterization tool to investigate these processes in such systems that are not accessible by other means. With the combination of X-ray scattering techniques, structure-property relationships are determined as a function …


Potential For On-Site, Prosecutorial Evidence From Drug Residues Collected On Plasmonic Paper: A Pilot Study For Sers-Psi-Ms, Daniel S. Burr Jul 2019

Potential For On-Site, Prosecutorial Evidence From Drug Residues Collected On Plasmonic Paper: A Pilot Study For Sers-Psi-Ms, Daniel S. Burr

Theses and Dissertations

Given the potential impact of improvements to on-site drug testing, as well as recent, successful displays of paper spray ionization mass spectrometry (PSI-MS) in this regard, this thesis pilots the implementation of Raman spectroscopy as a compliment to MS for field-based confirmatory drug testing. Surface enhanced Raman scattering (SERS) is utilized for applications to trace detection. Two-tiered analysis of individual drug samples is enabled using triangularly-cut plasmonic papers, from which both SERS and PS-MS analysis may be performed. Several drug compounds, representative of traditional and emerging drug types, are examined by these techniques, both separately and as a fully integrated, …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Protein, Yi Zhu, Yizhi Xiao, Elizabeth Gillies, Walter L. Siqueira Jun 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Protein, Yi Zhu, Yizhi Xiao, Elizabeth Gillies, Walter L. Siqueira

Western Research Forum

Dental caries remains one of the most common chronic diseases worldwide. In previous studies, salivary proteins (e.g. histatin 3, statherin) have demonstrated biological functions including the inhibition of crystal growth, antibacterial activities, which are directly related to tooth homeostasis and prevention of dental caries. However, proteins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to protect proteins against enzymatic degradation at physiological salivary pH, in addition to swell selectively at lower pH conditions to facilitate the release of the encapsulated proteins, as major oral complications occur …


To Compare Cyclosporine A Nanoformulations For Their Effectiveness In Reducing Nephrotoxicity, Ilkin Nasirli Jun 2019

To Compare Cyclosporine A Nanoformulations For Their Effectiveness In Reducing Nephrotoxicity, Ilkin Nasirli

USF Tampa Graduate Theses and Dissertations

Cyclosporine (CsA) is one of the main immune-suppressant agents which has been used widely in organ transplantation against graft rejection. However, the low oral bioavailability and the associated adverse effects such as nephrotoxicity are the main drawbacks of current usage of this drug. Thus, purpose of this research is to formulate PLGA nanoparticles of CsA to improve its effectiveness and to reduce the nephrotoxicity induced by the plain drug. CsA-loaded PLGA nanoparticles were prepared by the nanoprecipitation method. Particle size and zeta potential of the formulation was determined and percent drug entrapment were also determined. Quantitative estimation was carried out …


Recent Progresses Of Enzymes Assembled In Nanochannels For Catalytic Reaction, Shangguan Li, Xu Xuan, Liu Song-Qin Jun 2019

Recent Progresses Of Enzymes Assembled In Nanochannels For Catalytic Reaction, Shangguan Li, Xu Xuan, Liu Song-Qin

Journal of Electrochemistry

The research of enzymes assembled and catalytic reaction not only is beneficial to exploit the essences of life’s activities, but also is significant in developing the practical application of enzymes in these areas including industrial production, analysis and detection, treatment of disease, etc. The effective immobilization and ordered assembly of enzymes are important methods for maintaining the catalytic activity, catalytic reaction stability and catalytic process controllability of enzymes. Among them, single or multi-enzymes are immobilized orderly in nanochannels that exhibit unique features and advantages, accordingly, the confinement effect of nanochannels can increase the selectivity and catalytic efficiency of enzymes through …


Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li Jun 2019

Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li

Journal of Electrochemistry

Nanomaterials have shown many potential application prospects in the biomedical field, such as medical imaging, drug delivery and biosensing due to their unique physical and chemical properties. In this review we focus on nanomaterials that have shown not only abilities of radiation protection, but also good electrocatalytic activities toward reduction reactions of hydrogen peroxide and oxygen. We discuss the abilities of radiation protection of these nanomaterials that are ascribed to their enzyme-like activities because their catalytic properties provide an effective pathway for scavenging free radicals in vivo via rapid reactions with reactive oxygen species. We also provide insights into electrocatalytic …


Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou Jun 2019

Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou

Journal of Electrochemistry

Single particle impact electrochemistry (SPIEC) has grown rapidly in recent years and shown great promise in the analysis of nanoparticle properties as well as the detection of biomolecules including DNA, RNA, protein, enzyme, bacteria, virus, vesicles and others. This minireview summarizes recent advances in electroanalytical applications of SPIEC according to different analytical methods, i.e., direct electrolysis of nanoparticles or labeled nanoparticles, direct electrolysis of soft particles encapsulated redox molecule, indirect electrochemistry of particles, area and diffusion blocking, and changes in current magnitude and collision frequency.


Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia Jun 2019

Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia

Journal of Electrochemistry

Nanofluidics, as a young research field, has been receiving more and more attentions. It has been successfully applied in various fields including nanoscale separation, biochemical sensing and energy conversion. The development of nanofluidics is closely related to electrochemistry that can provide a driving force for the study of the material transport characteristics in nanopores/nanochannels. On the other hand, nanopores/nanochannels can creat a microenvironment for study of spatially nanoconfined electrochemistry. The combination of nanofluidics and electrochemistry has given rise to many new theories and technologies for single molecule/particle analysis and nanofluid manipulation. Herein, we provide a review of the recent progresses …


Correlated Optical Imaging And Electrochemical Recording For Studying Single Nanoparticle Collisions, Lin-Lin Sun, Wei Wang, Hong-Yuan Chen Jun 2019

Correlated Optical Imaging And Electrochemical Recording For Studying Single Nanoparticle Collisions, Lin-Lin Sun, Wei Wang, Hong-Yuan Chen

Journal of Electrochemistry

With the development of nano-fabrications in recent years, a novel strategy based on random collisions of single electroactive nanoparticles (NPs) onto an inert ultramicroelectrode (UME) has been emerged in the field of nanoelectrochemistry, and named as single nanoparticles collisions (SNCs). The technique uses a chronoamperometric method to detect transient current generated by random collisions of single NPs onto an UME. By analyzing the current signal, one could study the properties of single NPs. Although this technique can detect electrochemical or electrocatalytic currents of a single NP, the traditional SNCs technology lacks necessary spatial resolution to identify and characterize a specific …


A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long Jun 2019

A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long

Journal of Electrochemistry

Nanopore employs a single bio-molecule interface, which is a highly sensitive single-molecule detection technology for measuring single biomolecules such as DNA, RNA, protein, and peptide. The interaction between single molecule and nanopore is thermodynamically controlled. Therefore, it is urgent to precisely control the temperature of the nanopore system without introduction of any noise. In this paper, we have developed a low-noise temperature control system for single-molecule detection of nanopores to achieve precise regulation at the ambient temperature during measurements. The system utilizes the thermoelectric effect of the semiconductor refrigerating chip to heat or cool the detection chamber, while adopts electromagnetically …


Permeability Of Oxygen And Carbon Dioxide Through Pinholes In Barrier Coatings, Petri Johansson, Johanna Lahti, Jorma Vihinen, Jurkka Kuusipalo Jun 2019

Permeability Of Oxygen And Carbon Dioxide Through Pinholes In Barrier Coatings, Petri Johansson, Johanna Lahti, Jorma Vihinen, Jurkka Kuusipalo

Journal of Applied Packaging Research

Abstract

Packaging materials are typically made of multilayer structures combining polymers, metals and inorganic materials. Multilayer structures are selected in order to optimize the thickness and performance in packaging applications. Atomic layer deposited (ALD) aluminium oxide (Al2O3) layer provides good barrier properties against oxygen and carbon dioxide gases i.e. permeation of gases through ALD coated polymer films will reduce remarkably. The target was to study the effect of pinholes on the oxygen and carbon dioxide permeability of ALD coated extrusion-coated packaging paper. Pinholes were artificially generated by ultra violet (UV) laser drilling through the polymer layer …