Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 70

Full-Text Articles in Nanoscience and Nanotechnology

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

All Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine ...


Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin May 2019

Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin

Engineering and Applied Science Theses & Dissertations

Abstract of the Dissertation

Defect Chemistry and Ion Intercalation During the Growth and Solid-State Transformation of Metal Halide Nanocrystals

Semiconductor metal halides as light-sensitive materials have applications in multiple areas, such as photographic film, antibacterial agents and photocatalysts. One focus of this dissertation is to achieve novel morphologies of ternary silver bromoiodide (AgBr1-xIx, 0

For the silver halide system, we demonstrate that the anion composition of AgBr1-xIx nanocrystals determines their shape through the introduction of twin defects as the nanocrystals are made more iodide-rich. AgBr1-xIx nanocrystals grow as single-phase, solid solutions with the rock salt crystal structure for anions compositions ...


Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties ...


Photoinduced Hole Transfer And Recombination Dynamics Of A Cds Quantum Dot Sensitized Mononuclear Water Oxidation Catalyst, Orion Magruder Pearce Jan 2019

Photoinduced Hole Transfer And Recombination Dynamics Of A Cds Quantum Dot Sensitized Mononuclear Water Oxidation Catalyst, Orion Magruder Pearce

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Artificial photosynthesis represents a promising strategy to capture and store solar energy through the production of carbon neutral fuels. This process begins with absorption of a photon by a semiconductor creating an electron-hole pair which are then separated and used to drive reduction and oxidation reactions. CdS nanostructures are model light absorbers for studying these charge transfer reactions and have already demonstrated photoinduced electron transfer to drive a variety of reactions. However, there has been comparatively little progress in understanding how CdS nanostructures may be used to sensitize oxidation reactions such as water oxidation. To this end, we undertook a ...


Spatial Distribution Of Organic Functional Groups Supported On Mesoporous Silica Nanoparticles (2): A Study By 1h Triple-Quantum Fast-Mas Solid-State Nmr, Takeshi Kobayashi, Dilini Singappuli-Arachchige, Igor I. Slowing, Marek Pruski Aug 2018

Spatial Distribution Of Organic Functional Groups Supported On Mesoporous Silica Nanoparticles (2): A Study By 1h Triple-Quantum Fast-Mas Solid-State Nmr, Takeshi Kobayashi, Dilini Singappuli-Arachchige, Igor I. Slowing, Marek Pruski

Chemistry Publications

The distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles (MSNs) via co-condensation was scrutinized using 1D and 2D 1H solid-state NMR, including the triple-quantum/single-quantum (TQ/SQ) homonuclear correlation technique. The excellent sensitivity of 1H NMR and high resolution provided by fast magic angle spinning (MAS) allowed us to study surfaces with very low concentrations of aminopropyl functional groups. The sequential process, in which the injection of tetraethyl orthosilicate (TEOS) into the aqueous mother liquor was followed by dropwise addition of the organosilane precursor, resulted in deployment of organic groups on the surface, which were ...


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble ...


Development Of A Semigraphitic Sulfur-Doped Ordered Mesoporous Carbon Material For Electroanalytical Applications, Jaqueline R. Maluta, Sergio A.S. Machado, Umesh Chaudhary, J. Sebastian Manzano, Lauro T. Kubota, Igor I. Slowing Mar 2018

Development Of A Semigraphitic Sulfur-Doped Ordered Mesoporous Carbon Material For Electroanalytical Applications, Jaqueline R. Maluta, Sergio A.S. Machado, Umesh Chaudhary, J. Sebastian Manzano, Lauro T. Kubota, Igor I. Slowing

Ames Laboratory Accepted Manuscripts

The modification of traditional electrodes with mesoporous carbons is a promising strategy to produce high performance electrodes for electrochemical sensing. The high surface area of mesoporous carbons provides a large number of electroactive sites for binding analytes. Controlling the pore size and structure of mesoporous carbons and modifying their electronic properties via doping offers additional benefits like maximizing transport and tuning the electrochemical processes associated with analyte detection. This work reports a facile method to produce sulfur-doped ordered mesoporous carbon materials (S-OMC) with uniform pore structure, large pore volume, high surface area and semigraphitic structure. The synthesis used thiophenol as ...


High-Performance Flexible All-Solid-State Asymmetric Supercapacitors Based On Vertically Aligned Cuse@Co(Oh)2 Nanosheet Arrays, Jiangfeng Gong, Yazhou Tian, Ziyuan Yang, Qianjin Wang, Xihao Hong, Qing-Ping Ding Feb 2018

High-Performance Flexible All-Solid-State Asymmetric Supercapacitors Based On Vertically Aligned Cuse@Co(Oh)2 Nanosheet Arrays, Jiangfeng Gong, Yazhou Tian, Ziyuan Yang, Qianjin Wang, Xihao Hong, Qing-Ping Ding

Ames Laboratory Accepted Manuscripts

The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. Herein, we demonstrate a novel vertically aligned CuSe@Co(OH)(2) nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH)(2) nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g(-1) at a current density of 1 A g(-1). A flexible asymmetric all-solid-state supercapacitor is ...


Hybrid Electrochemical Capacitors: Materials, Optimization, And Miniaturization, Richa Agrawal Jan 2018

Hybrid Electrochemical Capacitors: Materials, Optimization, And Miniaturization, Richa Agrawal

FIU Electronic Theses and Dissertations

With the ever-advancing technology, there is an incessant need for reliable electrochemical energy storage (EES) components that can provide desired energy and power. At the forefront of EES systems are electrochemical capacitors (ECs), also known as supercapacitors that typically have higher power and superior cycle longevity but lower energy densities than their battery counterparts. One of the routes to achieve higher energy density for ECs is using the hybrid EC configuration, which typically utilizes a redox electrode coupled with a counter double-layer type electrode.

In this dissertation, both scale-up (coin-cell type) as well as scale-down (on-chip miniaturized) hybrid ECs were ...


Excited-State Dynamics Of Semiconductor Nanocrystals: Trapped-Hole Diffusion And Electron-Transfer Kinetics In Cds And Cdse Nanorods, James Keller Utterback Jan 2018

Excited-State Dynamics Of Semiconductor Nanocrystals: Trapped-Hole Diffusion And Electron-Transfer Kinetics In Cds And Cdse Nanorods, James Keller Utterback

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Colloidal semiconductor nanocrystals have many remarkable properties—such as exceptionally tunable excited states and surface chemistry—that have led to an enthusiastic interest in using them for optoelectronic applications such as solar-energy conversion. Such technologies require control over the generation, separation, and extraction of photoexcited electrons and holes. However, the interpretation of experimentally measured excited-state decay curves is challenging because they typically exhibit complicated shapes that are elusive to simple kinetic models. To understand the principles that govern electron and hole relaxation dynamics in these complex systems, models rooted in fundamental physical phenomena are needed. This dissertation describes efforts to ...


Using Semiconductor Nanocrystals To Drive Redox Enzymes With Light, Hayden Tyler Hamby Jan 2018

Using Semiconductor Nanocrystals To Drive Redox Enzymes With Light, Hayden Tyler Hamby

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Nanocrystals are an emergent strategy for providing electrons to redox enzymes for catalysis. In this dissertation I present my work on the investigation of how nanocrystals can be used to drive active site chemistry of two different enzymes. In the first project I present for the first time the direct coupling of cadmium sulfide nanorods (CdS NRs) to a CO2 reduction enzyme for the creation of new carbon-carbon bonds using light. Under optimal conditions, the maximum turnover frequency (TOFmax) for CO2 reduction is similar to that obtained in the native system where the native electron donor ferredoxin ...


Interpolymer Complexation As A Strategy For Nanoparticle Assembly And Crystallization, Srikanth Nayak, Nathan Horst, Honghu Zhang, Wenjie Wang, Surya Mallapragada, Alex Travesset, David Vaknin Jan 2018

Interpolymer Complexation As A Strategy For Nanoparticle Assembly And Crystallization, Srikanth Nayak, Nathan Horst, Honghu Zhang, Wenjie Wang, Surya Mallapragada, Alex Travesset, David Vaknin

Chemical and Biological Engineering Publications

Controlled self-assembly of nanoparticles into ordered structures is a major step in fabricating nanotechnology based devices. Here, we report on the self-assembly of high quality superlattices of nanoparticles in aqueous suspensions induced via interpolymer complexation. Using small angle X-ray scattering, we demonstrate that the NPs crystallize into superlattices of FCC symmetry, initially driven by hydrogen bonding and subsequently by van der Waals forces between the complexed coronas of hydrogen-bonded polymers. We show that the lattice constant and crystal quality can be tuned by polymer concentration, suspension pH and the length of polymer chains. Interpolymer complexation to assemble nanoparticles is scalable ...


Interfacial Self-Assembly Of Polyelectrolyte-Capped Gold Nanoparticles, Honghu Zhang, Srikanth Nayak, Wenjie Wang, Surya K Mallapragada, David Vaknin Oct 2017

Interfacial Self-Assembly Of Polyelectrolyte-Capped Gold Nanoparticles, Honghu Zhang, Srikanth Nayak, Wenjie Wang, Surya K Mallapragada, David Vaknin

Ames Laboratory Accepted Manuscripts

We report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed ...


Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin May 2017

Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin

Theses and Dissertations

This research focuses on the development of shape-controlled synthesis of Cu NM, Cu-based bimetallic and trimetallic nanostructures, and their electrocatalytic properties for methanol oxidation reaction (MOR). Copper nanomaterials (Cu NM) with specific surface facets can tailor their catalytic activity. Understanding reagents responsible for Cu NM growth is important for morphology-controlled synthesis of the nanostructures. This research studies the halide influence on Cu NM growth and morphology in an oil-based synthesis. The morphology of the Cu NM varies with the halide type (i.e., Cl-, Br-, I-), and the halide concentration. Additionally, the type of Cu precursor also influenced the morphology ...


Photophysics And Electron Transfer Dynamics Of Type-Ii And Quasi Type-Ii Heterostructure Nanocrystals, Amanda Norell Grennell Jan 2017

Photophysics And Electron Transfer Dynamics Of Type-Ii And Quasi Type-Ii Heterostructure Nanocrystals, Amanda Norell Grennell

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Type-II and quasi type-II heterostructure nanocrystals are known to exhibit extended excited-state lifetimes compared to their single material counterparts because of reduced wavefunction overlap between the electron and hole. Thus, type-II heterostructures are promising materials for solar-to-fuel conversion, as extended excited-state lifetimes make transfer of charges to a catalyst more competitive with intrinsic nanocrystal decay processes. However, due to fast and efficient hole trapping and non-uniform morphologies, the photophysics of dot-in-rod heterostructures are more rich and complex than this simple picture. Using transient absorption spectroscopy, we observe that the behavior of electrons in the CdS “rod” or “bulb” regions of ...


Photophysics And Electron Transfer Dynamics Of Type-Ii And Quasi Type-Ii Heterostructure Nanocrystals, Amanda N. Grennell Jan 2017

Photophysics And Electron Transfer Dynamics Of Type-Ii And Quasi Type-Ii Heterostructure Nanocrystals, Amanda N. Grennell

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Type-II and quasi type-II heterostructure nanocrystals are known to exhibit extended excited-state lifetimes compared to their single material counterparts because of reduced wavefunction overlap between the electron and hole. Thus, type-II heterostructures are promising materials for solar-to-fuel conversion, as extended excited-state lifetimes make transfer of charges to a catalyst more competitive with intrinsic nanocrystal decay processes. However, due to fast and efficient hole trapping and non-uniform morphologies, the photophysics of dot-in-rod heterostructures are more rich and complex than this simple picture. Using transient absorption spectroscopy, we observe that the behavior of electrons in the CdS “rod” or “bulb” regions of ...


Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama Oct 2016

Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama

Masters Theses & Specialist Projects

Various synthetic methods have been developed to produce metal nanostructures including copper and iron nanostructures. Modification of nanoparticle surface to enhance their characteristic properties through surface functionalization with organic ligands ranging from small molecules to polymeric materials including organic semiconducting polymers is a key interest in nanoscience. However, most of the synthetic methods developed in the past depend widely on non-aqueous solvents, toxic reducing agents, and high temperature and high-pressure conditions. Therefore, to produce metal nanostructures and their nanocomposites with a simpler and greener method is indeed necessary and desirable for their nano-scale applications. Hence the objective of this thesis ...


Directed Self-Assembly Of Block Copolymer, No1, Hiromichi Yamamoto Aug 2016

Directed Self-Assembly Of Block Copolymer, No1, Hiromichi Yamamoto

Protocols and Reports

The PS-rich and neutral PS-b-PMMA block copolymer (BCP) films were spin coated on the neutral random copolymer hydroxyl-terminated PS-r-PMMA layers grafted on the native oxide and 50 nm thick PECVD amorphous silicon oxide layers. Relationship between the grafting density of BCP and surface density of hydroxyl moiety on silicon oxide is discussed. Furthermore, optimization of annealing BCP films is reported, and wetted and de-wetted BCP films are shown in optical microscope images. In addition, finger print and nanopore structures of BCP films are also indicated in SEM images.


Metal Assisted Chemical Etching, Inayat Bajwa May 2016

Metal Assisted Chemical Etching, Inayat Bajwa

Protocols and Reports

No abstract provided.


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in ...


A Ship-In-A-Bottle Strategy To Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified For Furfural Hydrogenation, Raghu V. Maligal-Ganesh, Chaoxian Xiao, Tian Wei Goh, Lin-Lin Wang, Jeffrey Gustafson, Yuchen Pei, Zhiyuan Qi, Duane D. Johnson, Shiran Zhang, Franklin Feng Tao, Wenyu Huang Jan 2016

A Ship-In-A-Bottle Strategy To Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified For Furfural Hydrogenation, Raghu V. Maligal-Ganesh, Chaoxian Xiao, Tian Wei Goh, Lin-Lin Wang, Jeffrey Gustafson, Yuchen Pei, Zhiyuan Qi, Duane D. Johnson, Shiran Zhang, Franklin Feng Tao, Wenyu Huang

Chemistry Publications

Intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used ...


Effect Of Surface Omniphobicity On Drying By Forced Convection, Madani A. Khan, Jeffrey Alston, Andrew Guenthner Aug 2015

Effect Of Surface Omniphobicity On Drying By Forced Convection, Madani A. Khan, Jeffrey Alston, Andrew Guenthner

STAR (STEM Teacher and Researcher) Presentations

Low energy surfaces can strongly repel both oil and water. Recently these surfaces have been fabricated on various substrates including fabric, aluminum, stainless steel and many other materials. In this experiment we explore the use of low energy surface deposition on aluminum alloy, stainless steel and silicon substrates, to enhance the drying rate of liquids removed from the surface by forced convection. We control surface roughness by substrate abrasion and by the growth of Al2O3 nanograss to enhance liquid repellence by use of a hierarchical texture. Liquid repellence of the substrates is measured by contact angles of ...


Surface Modification Of Noble Metal Nanostructures Toward Biomedical Applications, Samir V. Jenkins Jul 2015

Surface Modification Of Noble Metal Nanostructures Toward Biomedical Applications, Samir V. Jenkins

Theses and Dissertations

Noble metal nanostructures have seen a steady increase in biomedical application over the last several decades; new diagnostic and therapeutic modalities are under intense investigation. Many of these applications are possible because of post-synthetic modifications to the particle surface. These modifications take a variety of forms and can significantly affect the pharmacokinetics of these particles. In this work, various surface modifications were investigated. Particle agglomeration, which occurs when particle surfaces remain in contact, can significantly affect the toxicity and efficacy of a nanomedicine. Darkfield microscopy and single-particle ICP-MS were developed as complementary methods to detect agglomeration in blood, with the ...


Inertial Force-Driven Synthesis Of Near-Infrared Plasmonic Nanosphere Composites: Physicochemical Characterizations, Joseph Noel Batta-Mpouma May 2015

Inertial Force-Driven Synthesis Of Near-Infrared Plasmonic Nanosphere Composites: Physicochemical Characterizations, Joseph Noel Batta-Mpouma

Theses and Dissertations

Near-infrared (NIR) responsive nanoparticles (NPs) like gold nanorods (GNRs) are important in biomedical fields because of their transparency for biological tissues. Although GNRs are sought after as contrast agents for theranostics in cancer studies, capping ligands like cetyltrimethylammonium bromide (CTAB) for the GNR synthesis are toxic for biological tissues. The need for an alternative to toxic GNRs is of interest to alleviate the problem.

This work aimed to optimize the synthesis of NIR responsive nanosphere composites (NSCs) by inertial force (g-force) using colloidal gold NPs as model, elucidate the mechanism for the NSC formation, and study their detailed physicochemical characteristics ...


Analytical Models For Atomic Friction, Yalin Dong, Ajay Vadakkepatt, Ashlie Martini Apr 2015

Analytical Models For Atomic Friction, Yalin Dong, Ajay Vadakkepatt, Ashlie Martini

Dr. Yalin Dong

In this methods article, we describe application of Prandtl–Tomlinson models and their extensions to interpret dry atomic-scale friction. The goal is to provide a practical overview of how to use these models to study frictional phenomena. We begin with the fundamental equations and build on them step-by-step—from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. The intention is to bridge the gap between theoretical analysis, numerical implementation, and predicted physical phenomena. In the process, we provide an introductory manual with example ...


The Optoelectronic Properties Of Surface-Modified Semiconductor Nanocrystal Solids, Earl D. Goodwin Jan 2015

The Optoelectronic Properties Of Surface-Modified Semiconductor Nanocrystal Solids, Earl D. Goodwin

Publicly Accessible Penn Dissertations

Colloidal semiconductor nanocrystals have emerged as fascinating new materials and gained interest in the last 30 years because of their size, shape, and compositionally tunable electronic and optical properties as well as their potential to serve as artificial atoms. Challenges and opportunities have arisen when assembling nanocrystals into nanocrystal solids for electronic and optoelectronic applications, largely because of the significant influence of nanocrystal surface chemistry on the electronic, optical, and structural properties of nanocrystal solids. In order to assemble nanocrystal solids for high performance devices, we must understand and be able to control the effects of nanocrystal surface organic capping ...


Simulation Studies Of Diblock-Copolymer Grafted Nanoparticle Assembly In Solvent And Polymer Matrix, Carla E. Estridge Jan 2015

Simulation Studies Of Diblock-Copolymer Grafted Nanoparticle Assembly In Solvent And Polymer Matrix, Carla E. Estridge

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Macroscopic properties of polymer nanocomposites are fundamentally linked to the morphology (or assembled structure) of its constituents. In order to design composites to have specific macroscopic properties it is important to be able to control the assembly of the constituents in the composite. In this thesis we use molecular simulations to study the molecular-level interactions and assembly of one class of polymer nanocomposites, namely diblock-copolymer grafted nanoparticles in solvent and in polymer matrix.

First, we study how the molecular features of the diblock-copolymer grafts affect the assembly of grafted nanoparticles in a (implicit) small molecule solvent. Using coarse-grained molecular dynamics ...


Charge Transfer Dynamics In Complexes Of Light-Absorbing Cds Nanorods And Redox Catalysts, Molly Bea Wilker Jan 2015

Charge Transfer Dynamics In Complexes Of Light-Absorbing Cds Nanorods And Redox Catalysts, Molly Bea Wilker

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This dissertation describes research efforts to understand the photoexcited charge transfer kinetics in complexes of colloidal CdS nanorods coupled with either a water oxidation or reduction catalyst. The first project focuses on the charge transfer interactions between photoexcited CdS nanorods and a mononuclear water oxidation catalyst derived from the [Ru(bpy)(tpy)Cl]+ parent structure. Upon excitation, hole transfer from CdS oxidizes the catalyst (Ru2+→Ru3+) on a 100 ps – 1 ...


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Jun 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction.

Hydrophilic MNPs were shown to drive the self-assembly of BCPs ...


Understanding The Influence Of Interfacial Chemistry In Core, Core/Shell And Core/Shell/Shell Quantum Dots On Their Fluorescence Properties, Omondi Bernard Omogo May 2014

Understanding The Influence Of Interfacial Chemistry In Core, Core/Shell And Core/Shell/Shell Quantum Dots On Their Fluorescence Properties, Omondi Bernard Omogo

Theses and Dissertations

Colloidal semiconductor nanocrystals (quantum dots) have received a great deal of attention due to their superior size tunable properties and promising applications in many areas. Some of the most practical areas of their applications include light emitting diodes (LED), photovoltaic and biological studies. Synthetic methods of these crystals is becoming more established with new strategies being reported every now and then. However, quantitative studies connecting the processes at the interface, namely core-ligand, core-shell and shell-shells, to the overall quantum dots fluorescence properties are not well understood. Specifically for cores, relating surface-atoms interactions, solvents, ligands nature, density and functional groups on ...