Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 49

Full-Text Articles in Nanoscience and Nanotechnology

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz Jan 2015

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz

Jonathan C. Claussen

Enzymes provide the critical means by which to catalyze almost all biological reactions in a controlled manner. Methods to harness and exploit their properties are of strong current interest to the growing field of biotechnology. In contrast to depending upon recombinant genetic approaches, a growing body of evidence suggests that apparent enzymatic activity can be enhanced when located at a nanoparticle interface. We use semiconductor quantum dots (QDs) as a well-defined and easily bioconjugated nanoparticle along with Escherichia coli-derived alkaline phosphatase (AP) as a prototypical enzyme to seek evidence for this process in a de novo model system. We began …


Complex Logic Functions Implemented With Quantum Dot Bionanophotonic Circuits, Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Jan 2014

Complex Logic Functions Implemented With Quantum Dot Bionanophotonic Circuits, Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …


Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Jan 2013

Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by …


Mild Yet Phase-Selective Preparation Of Tio2 Nanoparticles From Ionic Liquids – A Critical Study, Tarek Alammar, Heshmat Noei, Yuemin Wang, Anja V. Mudring Jan 2013

Mild Yet Phase-Selective Preparation Of Tio2 Nanoparticles From Ionic Liquids – A Critical Study, Tarek Alammar, Heshmat Noei, Yuemin Wang, Anja V. Mudring

Anja V. Mudring

The phase selective synthesis of nanocrystalline TiO2, titania, in ionic liquids (ILs) is explored. The influence not only of the IL but also of the Ti-precursor, pH, and temperature is investigated. Sonochemical synthesis, microwave synthesis and conventional heating are compared. In the case of Ti(OiPr)4 (OiPr ¼ isopropyl) as the Ti-source the ILs [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide), [C3mimOH][Tf2N] (1-(3-hydroxypropyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)amide), [C4Py]- [Tf2N] (butylpyridinium bis(trifluoromethanesulfonyl)amide), [N1888][Tf2N] (methyltrioctylammonium bis- (trifluoromethanesulfonyl)amide), and [P66614][Tf2N] (tetradecyltrihexyl phosphonium bis(trifluoromethanesulfonyl) amide) led at ambient temperature to TiO2 in the form of anatase. The morphology of nano-anatase is controlled by the IL cation. Anatase nanospheres with a crystal size …


Interface-Assisted Ionothermal Synthesis, Phase Tuning, Surface Modification And Bioapplication Of Ln3+-Doped Nagdf4 Nanocrystals, Qiang Ju, Paul S. Campbell, Anja V. Mudring Jan 2013

Interface-Assisted Ionothermal Synthesis, Phase Tuning, Surface Modification And Bioapplication Of Ln3+-Doped Nagdf4 Nanocrystals, Qiang Ju, Paul S. Campbell, Anja V. Mudring

Anja V. Mudring

Phase-selective synthesis of trivalent lanthanide-doped NaGdF4 nanocrystals, capped by ionic liquid cations bearing long alkyl chains, succeeded via a one-step interface-assisted ionothermal route. Owing to the existence of an interface formed between hydrophobic ionic liquids and ethylene glycol, selectively either pure cubic or hexagonal phase NaGdF4 could be obtained by changing the amount of the added surfactant, polyethyleneimine. By doping various trivalent lanthanide cations, multicolor emissions under excitation by a single wavelength could be achieved. The nanocrystals can be surface derivatized by an amphiphilic polymer and endowed with functional groups that allow the particles to not only be dispersed in …


Phase And Morphology Selective Interface-Assisted Synthesis Of Highly Luminescent Ln3+-Doped Nagdf4 Nanorods, Anja V. Mudring, Qiang Ju Jan 2013

Phase And Morphology Selective Interface-Assisted Synthesis Of Highly Luminescent Ln3+-Doped Nagdf4 Nanorods, Anja V. Mudring, Qiang Ju

Anja V. Mudring

Making use of the multifunctional properties of ionic liquids by employing them as a fluoride resource and hydrophilic phase, we have grown small, monodisperse, highly luminescent Ln3+-doped NaGdF4 nanorods at the interface between octadecene and the reactive ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. The obtained nanocrystals could further be endowed with functional groups and rendered water dispersible, which allows them to be used for biodetection.


White-Light-Emitting Single Phosphors Via Triply Doped Laf3 Nanoparticles, Chantal Lorbeer, Anja V. Mudring Jan 2013

White-Light-Emitting Single Phosphors Via Triply Doped Laf3 Nanoparticles, Chantal Lorbeer, Anja V. Mudring

Anja V. Mudring

The production of high-quality phosphors for white-emitting applications is an important goal for the settlement of light-emitting diodes (LEDs) in the market and households. Single phosphors directly yielding white emission are advantageous in comparison to a mixture of individual red, green, and blue phosphors as these are hampered by reabsorption of the blue light. Here, a combined approach to uniform, nanoscale particles as single-white-emitting phosphor is realized via an ionic-liquid-based synthesis. LaF3 particles codoped with various amounts of Tm3+, Tb3+, and Eu3+ were synthesized, and their structural, morphological, and optical properties were studied. Small particles with a mean size of …


Bacterial Isolation By Lectin-Modified Microengines, Susana Campuzano, Jahir Orozco, Daniel Kagan, Maria Guix, Wei Gao, Sirilak Sattayasamitsathit, Jonathan C. Claussen, Arben Merkoci, Joseph Wang Jan 2012

Bacterial Isolation By Lectin-Modified Microengines, Susana Campuzano, Jahir Orozco, Daniel Kagan, Maria Guix, Wei Gao, Sirilak Sattayasamitsathit, Jonathan C. Claussen, Arben Merkoci, Joseph Wang

Jonathan C. Claussen

New template-based self-propelled gold/nickel/polyaniline/platinum (Au/Ni/PANI/Pt) microtubular engines, functionalized with the Concanavalin A (ConA) lectin bioreceptor, are shown to be extremely useful for the rapid, real-time isolation of Escherichia coli (E. coli) bacteria from fuel-enhanced environmental, food, and clinical samples. These multifunctional microtube engines combine the selective capture of E. coli with the uptake of polymeric drug-carrier particles to provide an attractive motion-based theranostics strategy. Triggered release of the captured bacteria is demonstrated by movement through a low-pH glycine-based dissociation solution. The smaller size of the new polymer-metal microengines offers convenient, direct, and label-free optical visualization of the captured bacteria and …


Phosphate Protected Fluoride Nano-Phosphors, Joanna Cybinska, Chantal Lorbeer, Anja V. Mudring Jan 2012

Phosphate Protected Fluoride Nano-Phosphors, Joanna Cybinska, Chantal Lorbeer, Anja V. Mudring

Anja V. Mudring

A fast and easy 2-in-1 step microwave reaction procedure to phosphate coated nanofluorides allows for the formation of phosphate protected fluoride nanoparticles from simple lanthanide precursors in ionic liquids. The phosphate shell efficiently prevents the fluoride particle from decomposition in an atmosphere (containing oxygen and water) at elevated temperatures.


Ultrasound-Assisted Synthesis Of Mesoporous Β-Ni(Oh)2 And Nio Nano-Sheets Using Ionic Liquids, Tarek Alammar, Osama Shekhah, Jonas Wohlgemuth, Anja V. Mudring Jan 2012

Ultrasound-Assisted Synthesis Of Mesoporous Β-Ni(Oh)2 And Nio Nano-Sheets Using Ionic Liquids, Tarek Alammar, Osama Shekhah, Jonas Wohlgemuth, Anja V. Mudring

Anja V. Mudring

Via a facile ultrasound synthesis from nickel acetate and sodium hydroxide with ionic liquids as the solvent and template it is possible to obtain nano-β-Ni(OH)2 of various dimensionalities depending on the reaction conditions with the ionic liquid (IL) being the most important factor. Scanning electron microscopy (SEM) imaging showed β-Ni(OH)2 to form as nanosheets, nanorods and nanospheres depending on the IL. ILs with strong to moderate hydrogen bonding capability like [C3mimOH][Tf2N] (1-(3-hydroxypropyl)-3-methylimidazolium bis(trifluoromethanesulfonylamide)), [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonylamide)) and [Edimim][Tf2N] (1-ethyl-2,3-diemethylimidazolium bis(trifluoromethanesulfonylamide)) lead to the formation of nanosheets whilst [Py4][Tf2N] (butyl-pyridinium bis(trifluoromethanesulfonylamide)) leads to nanoparticles and [N1888][Tf2N] (methyltrioctylammonium bis(trifluoromethanesulfonylamide)) to nanorods. Subsequent …


Microbiosensors Based On Dna Modified Single-Walled Carbon Nanotube And Pt Black Nanocomposites, Jin Shi, Tae-Gon Cha, Jonathan C. Claussen, Alfred R. Diggs, Jong Hyun Choi, D. Marshall Porterfield Jan 2011

Microbiosensors Based On Dna Modified Single-Walled Carbon Nanotube And Pt Black Nanocomposites, Jin Shi, Tae-Gon Cha, Jonathan C. Claussen, Alfred R. Diggs, Jong Hyun Choi, D. Marshall Porterfield

Jonathan C. Claussen

Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result …


Electrochemical Glutamate Biosensing With Nanocube And Nanosphere Augmented Single-Walled Carbon Nanotube Networks: A Comparative Study, Jonathan C. Claussen, Mayra S. Artiles, Eric S. Mclamore, Subhashree Mohanty, Jin Shi, Jenna L. Rickus, Timothy S. Fisher, D. Marshall Porterfield Jan 2011

Electrochemical Glutamate Biosensing With Nanocube And Nanosphere Augmented Single-Walled Carbon Nanotube Networks: A Comparative Study, Jonathan C. Claussen, Mayra S. Artiles, Eric S. Mclamore, Subhashree Mohanty, Jin Shi, Jenna L. Rickus, Timothy S. Fisher, D. Marshall Porterfield

Jonathan C. Claussen

We describe two hybrid nanomaterial biosensor platforms, based on networks of single-walled carbon nanotubes (SWCNTs) enhanced with Pd nanocubes and Pt nanospheres and grown in situ from a porous anodic alumina (PAA) template. These nanocube and nanosphere SWCNT networks are converted into glutamate biosensors by immobilizing the enzyme glutamate oxidase (cross-linked with gluteraldehyde) onto the electrode surface. The Pt nanosphere/SWCNT biosensor outperformed the Pd nanocube/SWCNT biosensor and previously reported similar nanomaterial-based biosensors by amperometrically monitoring glutamate concentrations with a wide linear sensing range (50 nM to 1.6 mM) and a small detection limit (4.6 nM, 3s). These results combined with …


Nanotechnology Education—First Step In Implementing A Spiral Curriculum, Ganesh Balasubramanian, Vinod K. Lohani, Ishwar K. Puri, Scott W. Case, Roop L. Mahajan Jan 2011

Nanotechnology Education—First Step In Implementing A Spiral Curriculum, Ganesh Balasubramanian, Vinod K. Lohani, Ishwar K. Puri, Scott W. Case, Roop L. Mahajan

Ganesh Balasubramanian

A nanotechnology learning module was implemented into a freshman engineering course at Virginia Tech. The novelty of our approach is that an established spiral curriculum model has been employed, for the first time to the best of authors’ knowledge, to design the nanotechnology option. The module was piloted in a freshman class (180 students) during spring ‘08. The key components included (1) a prior knowledge survey, (2) a 40-minute in-class presentation on basic nanotechnology concepts, (3) an activity that involves nanoscale image analysis and the plotting of molecular forces usingLabVIEWsoftware,and(4)apost-modulesurvey.Lessonslearnedfromthepilotimplementationwereincorporated appropriately to expose roughly 1450 freshmen to nanotechnology basics in …


Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield Jan 2011

Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield

Jonathan C. Claussen

Nascent nanofabrication approaches are being applied to reduce electrode feature dimensions from the microscale to the nanoscale, creating biosensors that are capable of working more efficiently at the biomolecular level. The development of nanoscale biosensors has been driven largely by experimental empiricism to date. Consequently, the precise positioning of nanoscale electrode elements is typically neglected, and its impact on biosensor performance is subsequently overlooked. Herein, we present a bottom-up nanoelectrode array fabrication approach that utilizes low-density and horizontally oriented single-walled carbon nanotubes (SWCNTs) as a template for the growth and precise positioning of Pt nanospheres. We further develop a computational …


Rh1−Xpdxnanoparticle Composition Dependence In Co Oxidation By Oxygen: Catalytic Activity Enhancement In Bimetallic Systems, James Russell Renzas, Wenyu Huang, Yawen Zhang, Michael E. Grass, Dat Tien Hoang, Selim Alayoglu, Derek R. Butcher, Franklin Tao, Zhi Liu, Gabor A. Somorjai Jan 2011

Rh1−Xpdxnanoparticle Composition Dependence In Co Oxidation By Oxygen: Catalytic Activity Enhancement In Bimetallic Systems, James Russell Renzas, Wenyu Huang, Yawen Zhang, Michael E. Grass, Dat Tien Hoang, Selim Alayoglu, Derek R. Butcher, Franklin Tao, Zhi Liu, Gabor A. Somorjai

Wenyu Huang

Bimetallic 15 nm Rh1−xPdxnanoparticle catalysts of five different compositions and supported on Si wafers have been synthesized, characterized using TEM, SEM, and XPS, and studied in CO oxidation by O2 in two pressure regimes: atmospheric pressure and 100–200 mTorr. The RhPd bimetallic nanocrystals exhibited similar synergetic effect of increased reaction activity at both atmospheric (760 Torr) and moderate (100–200 mTorr) pressures compared with pure Pd or Rh. The magnitude of the effect depends on the relative pressures of the CO and O2 reactant gases and the reaction temperature. The catalytic activity of the nanocrystals measured at moderate pressure is directly …


Efficient Quantum Cutting In Hexagonal Nagdf4:Eu3+ Nanorods, Pushpal Ghosh, Sifu Tang, Anja V. Mudring Jan 2011

Efficient Quantum Cutting In Hexagonal Nagdf4:Eu3+ Nanorods, Pushpal Ghosh, Sifu Tang, Anja V. Mudring

Anja V. Mudring

An ionic liquid (IL) assisted solvothermal method is employed to prepare single phase, oxygen free, hexagonal NaGdF4:Eu3+ (2 mol%) nanorods with a visible quantum efficiency of 187%. In contrast, for mixed materials containing cubic and hexagonal NaGdF4:Eu3+, the quantum efficiency is much less (127%). Thus, synthesis parameters have to be carefully chosen in order to get the high performance hexagonal material. Not only the influence of the IL but also of the Gd : F ratio during synthesis as well as the temperature were studied. It is found that the IL stabilizes the formation of hexagonal NaGdF4:Eu3+, likewise a fluoride …


Stability And Growth Behavior Of Transition Metal Nanoparticles In Ionic Liquids Prepared By Thermal Evaporation: How Stable Are They Really?, Kai Richter, Alexander Birkner, Anja V. Mudring Jan 2011

Stability And Growth Behavior Of Transition Metal Nanoparticles In Ionic Liquids Prepared By Thermal Evaporation: How Stable Are They Really?, Kai Richter, Alexander Birkner, Anja V. Mudring

Anja V. Mudring

Recently we developed an access to metal- and metal-oxide colloids based on thermal evaporation of metals into ionic liquids (ILs). Here we present systematic studies on the long-time stability of gold and copper nanoparticles (NPs) in different ILs. The influence of metal concentration and temperature on the ripening of the as-prepared gold NPs in different ILs was investigated by transmission electron microscopy (TEM) and UV-vis absorption measurements. Short alkyl chain-length-methyl-imidazolium salts with weakly coordinating perfluorinated counter anions (PF6, BF4 or Tf2N, bis(trifluoromethanesulfonyl)amide) were found to be better stabilizers compared to ILs with cations bearing long alkyl chains (trihexyltetradecylphosphonium, 1-octyl-3-methylimidazolium) and …


Rh1−X Pd X Nanoparticle Composition Dependence In Co Oxidation By No, James Russell Renzas, Wenyu Huang, Yawen Zhang, Michael E. Grass, Gabor A. Somorjai Jan 2011

Rh1−X Pd X Nanoparticle Composition Dependence In Co Oxidation By No, James Russell Renzas, Wenyu Huang, Yawen Zhang, Michael E. Grass, Gabor A. Somorjai

Wenyu Huang

Bimetallic 15 nm Pd-core Rh-shell Rh1−x Pd x nanoparticle catalysts have been synthesized and studied in CO oxidation by NO. The catalysts exhibited composition-dependent activity enhancement (synergy) in CO oxidation in high NO pressures. The observed synergetic effect is attributed to the favorable adsorption of CO on Pd in NO-rich conditions. The Pd-rich bimetallic catalysts deactivated after many hours of oxidation of CO by NO. After catalyst deactivation, product formation was proportional to the Rh molar fraction within the bimetallic nanoparticles. The deactivated catalysts were regenerated by heating the sample in UHV. This regeneration suggests that the deactivation was caused …


Europium(Iii) Fluoride Nanoparticles From Ionic Liquids: Structural, Morphological, And Luminescent Properties, Chantal Lorbeer, Joanna Cybinska, Anja V. Mudring Jan 2011

Europium(Iii) Fluoride Nanoparticles From Ionic Liquids: Structural, Morphological, And Luminescent Properties, Chantal Lorbeer, Joanna Cybinska, Anja V. Mudring

Anja V. Mudring

Inorganic luminescent materials (phosphors) find widespread scientific and industrial applications. For potential applications, nanoscale phosphors are favored because of the reduced scattering and the possibility to miniaturize devices. In such materials, the optical behavior is strongly dependent on impurities or defects in the crystal lattice, so that a well-defined reaction protocol with fixed parameters is compulsory to ensure the quality of the obtained material. The fast and facile conversion of europium acetate via microwave radiation with and in different tetrafluoroborate ionic liquids to oxygen-free, hexagonal EuF3 nanoparticles is investigated in detail. The study of the influence of the different reaction …


Facile Preparation Of Quantum Cutting Gdf3 : Eu3+ Nanoparticles From Ionic Liquids, Chantal Lorbeer, Joanna Cybinska, Anja V. Mudring Jan 2010

Facile Preparation Of Quantum Cutting Gdf3 : Eu3+ Nanoparticles From Ionic Liquids, Chantal Lorbeer, Joanna Cybinska, Anja V. Mudring

Anja V. Mudring

Microwave reaction of Ln(OAc)3·xH2O, Ln = Gd, Eu; OAc = acetate) with and in the ionic liquid [C4mim][BF4] (C4mim = 1-butyl-3-methylimidazolium) allows the fast and efficient synthesis of small, uniform, oxygen-free lanthanide nanofluorides with excellent photophysical behaviour. For GdF3 : Eu3+ nanoparticles a quantum efficiency of up to 145% was determined.


Size Effect Of Ruthenium Nanoparticles In Catalytic Carbon Monoxide Oxidation, Sang Hoon Joo, Jeong Y. Park, J. Russell Renzas, Derek R. Butcher, Wenyu Huang, Gabor A. Somorjai Jan 2010

Size Effect Of Ruthenium Nanoparticles In Catalytic Carbon Monoxide Oxidation, Sang Hoon Joo, Jeong Y. Park, J. Russell Renzas, Derek R. Butcher, Wenyu Huang, Gabor A. Somorjai

Wenyu Huang

Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac)3 precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm …


Highly Active Heterogeneous Palladium Nanoparticle Catalysts For Homogeneous Electrophilic Reactions In Solution And The Utilization Of A Continuous Flow Reactor, Wenyu Huang, Jack Hung Chang Liu, Pinar Alayoglu, Yimin Li, Cole A. Whitman, Chia-Kuang Tsung, F. Dean Toste, Gabor A/ Somorjai Jan 2010

Highly Active Heterogeneous Palladium Nanoparticle Catalysts For Homogeneous Electrophilic Reactions In Solution And The Utilization Of A Continuous Flow Reactor, Wenyu Huang, Jack Hung Chang Liu, Pinar Alayoglu, Yimin Li, Cole A. Whitman, Chia-Kuang Tsung, F. Dean Toste, Gabor A/ Somorjai

Wenyu Huang

highly active heterogeneous Pd-nanoparticle catalyst for the intramolecular addition of phenols to alkynes was developed and employed in a continuous flow reaction system. Running the reaction in flow mode revealed reaction kinetics, such as the activation energy and catalyst deactivation, and provides many potential practical advantages.


Seedless Polyol Synthesis And Co Oxidation Activity Of Monodisperse (111)- And (100)-Oriented Rhodium Nanocrystals In Sub-10 Nm Sizes, Yawen Zhang, Michael E. Grass, Wenyu Huang, Gabor A. Somoraji Jan 2010

Seedless Polyol Synthesis And Co Oxidation Activity Of Monodisperse (111)- And (100)-Oriented Rhodium Nanocrystals In Sub-10 Nm Sizes, Yawen Zhang, Michael E. Grass, Wenyu Huang, Gabor A. Somoraji

Wenyu Huang

Monodisperse sub-10 nm (6.5 nm) sized Rh nanocrystals with (111) and (100) surface structures were synthesized by a seedless polyol reduction in ethylene glycol, with poly(vinylpyrrolidone) as a capping ligand. When using [Rh(Ac)2]2 as the metal precursor, (111)-oriented Rh nanopolyhedra containing 76% (111)-twinned hexagons (in 2D projection) were obtained; whereas, when employing RhCl3 as the metal precursor in the presence of alkylammonium bromide, such as tetramethylammonium bromide and trimethyl(tetradecyl)ammonium bromide, (100)-oriented Rh nanocubes were obtained with 85% selectivity. The {100} faces of the Rh nanocrystals are stabilized by chemically adsorbed Br− ions from alkylammonium bromides, which led to (100)-oriented nanocubes. …


Furan Hydrogenation Over Pt(111) And Pt(100) Single-Crystal Surfaces And Pt Nanoparticles From 1 To 7 Nm: A Kinetic And Sum Frequency Generation Vibrational Spectroscopy Study, Christopher J. Kliewer, Cesar Aliaga, Marco Bieri, Wenyu Huang, Chia-Kuang Tsung, Jennifer B. Wood, Kyriankos Komvopoulos, Gabor A. Somorjai Jan 2010

Furan Hydrogenation Over Pt(111) And Pt(100) Single-Crystal Surfaces And Pt Nanoparticles From 1 To 7 Nm: A Kinetic And Sum Frequency Generation Vibrational Spectroscopy Study, Christopher J. Kliewer, Cesar Aliaga, Marco Bieri, Wenyu Huang, Chia-Kuang Tsung, Jennifer B. Wood, Kyriankos Komvopoulos, Gabor A. Somorjai

Wenyu Huang

Sum frequency generation surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to systematically study the adsorption and hydrogenation of furan over Pt(111) and Pt(100) single-crystal surfaces and size-controlled 1.0-nm, 3.5-nm and 7.0-nm Pt nanoparticles at Torr pressures (10 Torr of furan, 100 Torr of H2) to form dihydrofuran, tetrahydrofuran, and the ring-cracking products butanol and propylene. As determined by SFG, the furan ring lies parallel to all Pt surfaces studied under hydrogenation conditions. Upright THF and the oxametallacycle intermediate are observed over the nanoparticle catalysts under reaction conditions. Butoxy increases in surface concentration over Pt(111) with …


Easy Access To Ultra Long-Time Stable, Luminescent Europium(Ii) Fluoride Nanoparticles In Ionic Liquids, Nina Von Prondzinski, Joanna Cybinska, Anja V. Mudring Jan 2010

Easy Access To Ultra Long-Time Stable, Luminescent Europium(Ii) Fluoride Nanoparticles In Ionic Liquids, Nina Von Prondzinski, Joanna Cybinska, Anja V. Mudring

Anja V. Mudring

Physical vapour deposition into ionic liquids allows for the first time the synthesis of a reduced lanthanide halide on the nanoscale. The obtained EuF2 nanoparticles show a bright blue luminescence and form long-time stable-colloidal solutions in the ionic liquids.


Study Of A Nanoscale Water Cluster By Atomic Force Microscopy, Manhee Lee, Baekman Sung, Nicole N. Hashemi, Wonho Jhe Jan 2009

Study Of A Nanoscale Water Cluster By Atomic Force Microscopy, Manhee Lee, Baekman Sung, Nicole N. Hashemi, Wonho Jhe

Nastaran Hashemi

We present a novel method for investigating a nanometric cluster of water molecules, which includes the formation and manipulation of nanometric water, and the measurement of its mechanical properties. The atomic force microscope based on the quartz tuning-fork sensor is employed to form and manipulate the nanometric water, and the theoretical tool of amplitude-modulation atomic force microscopy is used to obtain the elasticity, viscosity and dissipation energy of it. With high vertical resolution less than [similar]0.1 nm and high force sensitivity of [similar]0.01 N m−1, this tool facilitates the stable formation and manipulation of a nano-water cluster ([similar]104 molecules) in …


The Development And Implementation Of A Nanotechnology Module Into A Large, Freshman Engineering Course, Vinod Lohani, Ganesh Balasubramanian, Ishwar Puri, Scott Case, Roop Mahajan Jan 2009

The Development And Implementation Of A Nanotechnology Module Into A Large, Freshman Engineering Course, Vinod Lohani, Ganesh Balasubramanian, Ishwar Puri, Scott Case, Roop Mahajan

Ganesh Balasubramanian

The development and implementation of a nanotechnology learning module into a freshman engineering course in Virginia Tech’s large engineering program is discussed. This module, a part of a spiral theory based nanotechnology option that will be implemented in the curriculum of the Engineering Science Mechanics (ESM) department at Virginia Tech, was piloted with ~180 freshmen in Spring ’08. The pilot included a prior knowledge survey, a 40-minute in-class presentation on nanotechnology, a hands-on module involving analysis of nanoscale images, plotting of force functions at atomic scale using LABVIEW, and a post-module survey. Students’ misconceptions, observed through the prior knowledge survey, …


Rhodium Nanoparticle Shape Dependence In The Reduction Of No By Co, James Russell Renzas, Yawen Zhang, Wenyu Huang, Gabor Somoraji Jan 2009

Rhodium Nanoparticle Shape Dependence In The Reduction Of No By Co, James Russell Renzas, Yawen Zhang, Wenyu Huang, Gabor Somoraji

Wenyu Huang

The shape dependence of the catalytic reduction of nitric oxide by carbon monoxide on rhodium nanopoly- hedra and nanocubes was studied from 230 to 270 ° C. The nanocubes are found to exhibit higher turnover frequency and lower activation energy than the nanopolyhedra. These trends are compared to previous studies on Rh single crystals.


Sub-10 Nm Platinum Nanocrystals With Size And Shape Control: Catalytic Study For Ethylene And Pyrrole Hydrogenation, Chia-Kuang Tsung, John N. Kuhn, Wenyu Huang, Cesar Aliaga, Ling-I Hung, Gabor A. Somorjai, Peidong Yang Jan 2009

Sub-10 Nm Platinum Nanocrystals With Size And Shape Control: Catalytic Study For Ethylene And Pyrrole Hydrogenation, Chia-Kuang Tsung, John N. Kuhn, Wenyu Huang, Cesar Aliaga, Ling-I Hung, Gabor A. Somorjai, Peidong Yang

Wenyu Huang

Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported …