Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanostructured materials

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 29 of 29

Full-Text Articles in Nanoscience and Nanotechnology

Development And Degradation Analysis Of Novel Micro And Nanostructured Transition Metal Oxide (Tmo) Anodes For Aqueous Sodium Ion Batteries., Santanu Mukherjee May 2017

Development And Degradation Analysis Of Novel Micro And Nanostructured Transition Metal Oxide (Tmo) Anodes For Aqueous Sodium Ion Batteries., Santanu Mukherjee

Electronic Theses and Dissertations

One of the primary motivations driving battery technology research is the need to develop cleaner and more efficient energy storage systems. The portable electronics industry has developed exponentially, especially over the last couple of decades and therefore the importance of efficient electrochemical energy storage systems cannot be overstated. Li-ion batteries have been the predominant rechargeable energy in use, however, they have their own particular drawbacks viz. flammability of the electrolyte, expensive mining of the Li metal etc. This is where the importance of Na-ion batteries lie. This research focuses on using existing transition metal oxides (TMOs) and tuning their crystal ...


Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko Jul 2016

Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko

Dissertations and Theses

Magnetic resonance imaging (MRI) has become a powerful clinical modality in diagnostic medicine. It is non-invasive and offers high spatial and temporal resolution. The goal of molecular imaging is to reveal the pathophysiology underlying the observed anatomy and diagnose diseases. The detection of pathological biomarkers can lead to early recognition of diseases and improved monitoring for recurrence. Clinically available contrast agents are limited in their discrimination of contrast between tissues and they tend to have very high detection limits. Because biomarkers are very low in concentration there is a need for high payload deposition of contrast agent (CA) and targeted ...


Photoluminescent Silicon Nanoparticles: Fluorescent Cellular Imaging Applications And Photoluminescence (Pl) Behavior Study, Sheng-Kuei Chiu Aug 2015

Photoluminescent Silicon Nanoparticles: Fluorescent Cellular Imaging Applications And Photoluminescence (Pl) Behavior Study, Sheng-Kuei Chiu

Dissertations and Theses

Molecular fluorophores and semiconductor quantum dots (QDs) have been used as cellular imaging agents for biomedical research, but each class has challenges associated with their use, including poor photostability or toxicity. Silicon is a semiconductor material that is inexpensive and relatively environmental benign in comparison to heavy metal-containing quantum dots. Thus, red-emitting silicon nanoparticles (Si NPs) are desirable to prepare for cellular imaging application to be used in place of more toxic QDs. However, Si NPs currently suffer poorly understood photoinstability, and furthermore, the origin of the PL remains under debate.

This dissertation first describes the use of diatomaceous earth ...


Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee Apr 2015

Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee

Mikhail Vasiliev

In this paper, we experimentally investigate the performance of a set of technologies used for the deposition, annealing and characterization of high-performance magnetooptic rare-earth-doped garnet materials and all-garnet heterostructures for use in photonic crystals and novel integrated-optics devices.


Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee Apr 2015

Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee

Mikhail Vasiliev

In this paper, we experimentally investigate the performance of a set of technologies used for the deposition, annealing and characterization of high-performance magnetooptic rare-earth-doped garnet materials and all-garnet heterostructures for use in photonic crystals and novel integrated-optics devices.


Optical Properties Of Nanostructured Dielectric Coatings, Brandon Giatti Aug 2014

Optical Properties Of Nanostructured Dielectric Coatings, Brandon Giatti

Dissertations and Theses

Solar cells have extrinsic losses from a variety of sources which can be minimized by optimization of the design and fabrication processes. Reflection from the front surface is one such loss mechanism and has been managed in the past with the usage of planar antireflection coatings. While effective, these coatings are each limited to a single wavelength of light and do not account for varying incident angles of the incoming light source. Three-dimensional nanostructures have shown the ability to inhibit reflection for differing wavelengths and angles of incidence. Nanocones were modeled and show a broadband, multi-angled reflectance decrease due to ...


Transport Properties Of Nano-Silica Contained Self-Consolidating Concrete, Borhan Moradi Aug 2014

Transport Properties Of Nano-Silica Contained Self-Consolidating Concrete, Borhan Moradi

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this research study, transport properties of various self-consolidating concretes (SCCs) containing nano-particles (SiO2) were investigated. Nano-silica replaced a portion of the cementitious materials at different replacement levels ranging from 1.5 to 7.5% by weight. For the purpose of this investigation, flow, bulk, and transport properties of SCCs were studied. The investigated transport properties were absorption, water penetration, rapid chloride permeability, capillary absorption, rapid migration, and chloride diffusion. Transport properties of nano-silica SCCs were also compared to those of equivalent silica fume (micro silica) contained concretes, as well as those of control mixture (concrete without nano or micro ...


Assessing Different Zeolitic Adsorbents For Their Potential Use In Kr And Xe Separation, Breetha Alagappan Dec 2013

Assessing Different Zeolitic Adsorbents For Their Potential Use In Kr And Xe Separation, Breetha Alagappan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Separation of Kr from Xe is an important problem in spent nuclear fuel fission gas management. The energy intensive and expensive cryogenic distillation method is currently used to separate these gases. In this thesis, we have carried out the research into appropriate sorbents for the separation of Kr and Xe using pressure swing adsorption. We have examined zeolites using gas adsorption studies as they have the potential to be more cost effective than other sorbents. Zeolites are microporous aluminosilicates and have ordered pore structures. The pores in zeolites have extra-framework cations are substantially free to move. The mobility of cations ...


Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. Bennett, L. Menon, D. Heiman Oct 2012

Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. Bennett, L. Menon, D. Heiman

Donald Heiman

Ordered arrays of GaMnAs magnetic semiconductor nanodots have been fabricated using anodic porous alumina templates as etch masks. The magnetic behavior is studied for prepared arrays with 40 nm dot diameter, 15 nm dot thickness, and 80 nm periodicity. The disklike nanodots exhibit an easy axis for fields applied in the radial direction and a hard axis in the smaller direction. In the radial direction superparamagnetism is observed with a blocking temperature of 30 K. The fabrication technique is convenient for preparing nanodot arrays of compound semiconductors that cannot be formed by self-assembly techniques.


Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. P. Bennett, L. Menon, D. Heiman Oct 2012

Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. P. Bennett, L. Menon, D. Heiman

Latika Menon

Ordered arrays of GaMnAs magnetic semiconductor nanodots have been fabricated using anodic porous alumina templates as etch masks. The magnetic behavior is studied for prepared arrays with 40 nm dot diameter, 15 nm dot thickness, and 80 nm periodicity. The disklike nanodots exhibit an easy axis for fields applied in the radial direction and a hard axis in the smaller direction. In the radial direction superparamagnetism is observed with a blocking temperature of 30 K. The fabrication technique is convenient for preparing nanodot arrays of compound semiconductors that cannot be formed by self-assembly techniques.


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Apr 2012

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Srinivas Sridhar

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


On Developing Novel Energy-Relates Nanostructured Materials By Atomic Layer Deposition, Xiangbo Meng Aug 2011

On Developing Novel Energy-Relates Nanostructured Materials By Atomic Layer Deposition, Xiangbo Meng

Electronic Thesis and Dissertation Repository

ABSTRACT

This thesis presents the fabrication of a series of novel nanostructured materials using atomic layer deposition (ALD). In contrast to traditional methods including chemical vapor deposition (CVD), physical vapor deposition (PVD), and solution-based processes, ALD benefits the synthesis processes of nanostructures with many unrivalled advantages such as atomic-scale control, low temperature, excellent uniformity and conformality. Depending on the employed precursors, substrates, and temperatures, the ALD processes exhibited different characteristics. In particular, ALD has capabilities in fine-tuning compositions and structural phases. In return, the synthesis and the resultant nanostructured materials show many novelties.

This thesis covers ALD processes of four ...


Microwave Absorption Of Patterned Arrays Of Nanosized Magnetic Stripes With Different Aspect Ratios, Leszek M. Malkinski, Minghui Yu, Andriy Y. Voyk, Donald J. Scherer Ii, Leonard Spinu, Weillie Zhou, Scott Whittenburg, Zachary Davis, Jin-Seung Jung May 2011

Microwave Absorption Of Patterned Arrays Of Nanosized Magnetic Stripes With Different Aspect Ratios, Leszek M. Malkinski, Minghui Yu, Andriy Y. Voyk, Donald J. Scherer Ii, Leonard Spinu, Weillie Zhou, Scott Whittenburg, Zachary Davis, Jin-Seung Jung

Scott L Whittenburg

Arrays consisting of nanosized stripes of Permalloy with different length-to-width ratios have been fabricated using electron beam nanolithography, magnetron sputtering, and lift-off process. These stripes have a thickness of 100 nm, a width of 300 nm, and different lengths ranging from 300 nm to 100 μm. The stripes are separated by a distance of 1 μm. Magnetization hysteresis loops were measured using a superconducting quantum interference device susceptometer. Microwave absorption at 9.8 GHz was determined by means of ferromagnetic resonance technique. The dependence of the resonant field on the angle between the nanostructure and the in-plane dc magnetic field ...


Giant Raman Enhancement On Nanoporous Gold Film By Conjugating With Nanoparticles For Single-Molecule Detection, Lihua Qian, Biswajit Das, Yan Li, Zhilin Yang Jan 2010

Giant Raman Enhancement On Nanoporous Gold Film By Conjugating With Nanoparticles For Single-Molecule Detection, Lihua Qian, Biswajit Das, Yan Li, Zhilin Yang

Electrical and Computer Engineering Faculty Publications

Hot spots have the contradictively geometrical requirements for both the narrowest interstices to provide strong near-field coupling, and sufficient space to allow entrance of the analytes. Herein, a two-step method is employed to create hot spots within hybrid nanostructures, which consist of self-supported nanoporous gold films with the absorbed probes and subsequent nanoparticle conjugates without surface agents or mechanical motion. The molecules confined into 1 nm interstice exhibit 2.9 × 107 times enhancement in Raman scattering compared to pure nanoporous gold. Giant enhancement primarily results from strong near-field coupling between nanopore and nanoparticle, which is theoretically confirmed by finite-difference ...


An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das Mar 2008

An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das

Electrical and Computer Engineering Faculty Publications

Nanoparticles of metals and semiconductors are promising for the implementation of a variety of photonic and electronic devices with superior performances and new functionalities. However, their successful implementation has been limited due to the lack of appropriate fabrication processes that are suitable for volume manufacturing. The current techniques for the fabrication of nanoparticles either are solution based, thus requiring complex surface passivation, or have severe constraints over the choice of particle size and material. We have developed an ultrahigh vacuum system for the implementation of a complex nanosystem that is flexible and compatible with the silicon integrated circuit process, thus ...


Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck Mar 2008

Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck

Physics Faculty Publications and Presentations

Two novel (and proprietary) strategies for the structural identification of a nanocrystal from either a single high-resolution (HR) transmission electron microscopy (TEM) image or a single precession electron diffraction pattern are proposed and their advantages discussed in comparison to structural fingerprinting from powder X-ray diffraction patterns. Simulations for cubic magnetite and maghemite nanocrystals are used as examples.


Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee Jan 2008

Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee

School of Engineering Publications

In this paper, we experimentally investigate the performance of a set of technologies used for the deposition, annealing and characterization of high-performance magnetooptic rare-earth-doped garnet materials and all-garnet heterostructures for use in photonic crystals and novel integrated-optics devices.


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2008

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to ...


Microwave Absorption Of Patterned Arrays Of Nanosized Magnetic Stripes With Different Aspect Ratios, Leszek M. Malkinski, Minghui Yu, Andriy Y. Voyk, Donald J. Scherer Ii, Leonard Spinu, Weillie Zhou, Scott Whittenburg, Zachary Davis, Jin-Seung Jung Jan 2007

Microwave Absorption Of Patterned Arrays Of Nanosized Magnetic Stripes With Different Aspect Ratios, Leszek M. Malkinski, Minghui Yu, Andriy Y. Voyk, Donald J. Scherer Ii, Leonard Spinu, Weillie Zhou, Scott Whittenburg, Zachary Davis, Jin-Seung Jung

Physics Faculty Publications

Arrays consisting of nanosized stripes of Permalloy with different length-to-width ratios have been fabricated using electron beam nanolithography, magnetron sputtering, and lift-off process. These stripes have a thickness of 100 nm, a width of 300 nm, and different lengths ranging from 300 nm to 100 μm. The stripes are separated by a distance of 1 μm. Magnetization hysteresis loops were measured using a superconducting quantum interference device susceptometer. Microwave absorption at 9.8 GHz was determined by means of ferromagnetic resonance technique. The dependence of the resonant field on the angle between the nanostructure and the in-plane dc ...


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2007

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to ...


Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf Nov 2006

Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf

Physics Faculty Publications and Presentations

Aspects of transmission electron goniometry are discussed. Combined with high resolution phase contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) in the atomic number contrast (Z-STEM) or the phase contrast bright field mode, transmission electron goniometry offers the opportunity to develop dedicated methods for the crystallographic characterization of nanocrystals in three dimensions. The relationship between transmission electron goniometry and electron tomography for materials science applications is briefly discussed. Internet based java applets that facilitate the application of transmission electron goniometry for cubic crystals with calibrated tilt-rotation and double-tilt specimen holders/goniometers are mentioned. The so called cubic-minimalistic ...


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2006

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive ...


Corrosion Barrier Development For Lbe Corrosion Resistance: Quarterly Report (April 2006), Biswajit Das Jan 2006

Corrosion Barrier Development For Lbe Corrosion Resistance: Quarterly Report (April 2006), Biswajit Das

Transmutation Sciences Materials (TRP)

As reported in the last quarterly report, synthesis of Cr nanowires was found to be problematic in terms of uniform coverage. Hence Ni was identified as the alternative metal to form the nanowires. The purpose of the metal nanowires is to provide structural integrity to the nanoporous alumina, as well as a second defense mechanism against corrosion by oxidizing in case the top alumina layer is compromised. Nickel was selected due to its established electrochemical synthesis procedure. While Ni can provide very good structural integrity to the porous alumina, one potential problem is its higher dissolution rate in LBE. However ...


Corrosion Barrier Development For Lbe Corrosion Resistance, Biswajit Das Jan 2005

Corrosion Barrier Development For Lbe Corrosion Resistance, Biswajit Das

Transmutation Sciences Materials (TRP)

In the last quarter, a specialized sample holder was developed for the anodization of alumina on steel. In addition, it was determined that oxalic acid was the most appropriate acid for the anodization of these structures. The steel samples obtained from LANL were first cut into a number of pieces, each measuring 11mm x 8mm x 1.6mm, to allow multiple experiments. Special care was taken to ensure that the cutting process did not damage the samples. After investigation of several techniques, including laser cutting, the samples were cut using EDM wires. The cut steel pieces did not show any ...


Corrosion Barrier Development For Lbe Corrosion Resistance: Quaterly Report, Biswajit Das Jan 2005

Corrosion Barrier Development For Lbe Corrosion Resistance: Quaterly Report, Biswajit Das

Transmutation Sciences Materials (TRP)

With the demonstration of formation of nanoporous alumina on steel and its good adhesion to substrate under thermal cycling, the next project task was to synthesize Chromium nanowires inside the alumina pores. During the previous quarter, a specialized sample holder was developed towards this goal. Various techniques for the deposition of Chromium were investigated and electro-deposition was determined to be the most suitable approach due to the large aspect ratio of the pores. A challenge in using electro-deposition for porous alumina is the potential sealing of the pores in aqueous solutions at higher temperatures. To avoid this problem, a search ...


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2005

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive ...


Making Sense Of Nanocrystal Lattice Fringes, P. Fraundorf, Wentao Qin, Peter Moeck, Eric Mandell Jan 2005

Making Sense Of Nanocrystal Lattice Fringes, P. Fraundorf, Wentao Qin, Peter Moeck, Eric Mandell

Physics Faculty Publications and Presentations

The orientation dependence of thin-crystal lattice fringes can be gracefully quantified using fringe-visibility maps, a direct-space analog of Kikuchi maps [Nishikawa and Kikuchi, Nature (London) 121, 1019 (1928)]. As in navigation of reciprocal space with the aid of Kikuchi lines, fringe-visibility maps facilitate acquisition of crystallographic information from lattice images. In particular, these maps can help researchers to determine the three-dimensional lattice of individual nanocrystals, to 'fringe-fingerprint' collections of randomly oriented particles, and to measure local specimen thickness with only a modest tilt. Since the number of fringes in an image increases with maximum spatial-frequency squared, these strategies (with help ...


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das May 2004

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

The objective of this project is to develop a novel nanostructure based coating technology that will provide significantly improved corrosion resistance for steel in LBE at elevated temperatures (500 - 600oC), as well as provide long-term reliability under thermal cycling. The nanostructure based coatings will consist of a layer of nanoporous alumina with the pores filled with an oxidizing metal such as Cr, followed by a capping layer of alumina. Alumina, which is a robust anti-corrosion material, provides corrosion resistance at elevated temperatures. The Cr serves two purposes: (1) it acts as a solid filler material for the pores ...


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications: Quaterly Report, Biswajit Das Jan 2004

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications: Quaterly Report, Biswajit Das

Transmutation Sciences Materials (TRP)

During the past quarter, this project employed one graduate student and two undergraduate student researchers and made the following accomplishments :

• Acquisition of steel samples for experiments

• Design and fabrication of specialized anodization apparatus to accommodate steel samples

• Investigation of adhesiveness of aluminum on steel

• Investigation of effects of anodizing acids on steel to identify most appropriate acid and a suitable barrier material