Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

University of New Mexico

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 33

Full-Text Articles in Nanoscience and Nanotechnology

Microsphere-Based Disordered Photonic Structures: Control Of Randomness In Langmuir-Blodgett Assembly And Radiative Cooling Applications, Sarun Atiganyanun May 2019

Microsphere-Based Disordered Photonic Structures: Control Of Randomness In Langmuir-Blodgett Assembly And Radiative Cooling Applications, Sarun Atiganyanun

Nanoscience and Microsystems ETDs

Many biological photonic structures in nature exhibit a significant degree of disorder within their periodic framework that enhances their optical properties. However, how such disorder contributes to the unique photonic characteristics is not yet fully understood. To facilitate studies on this topic, we investigated self-assembly of microspheres as a method to controllably introduce randomness to photonic structures. Specifically, we examined Langmuir-Blodgett assembly, a layer-by-layer fabrication technique. We developed and experimentally verified a model for the process and determined a condition of surface pressure and substrate pulling speed that corresponds to a maximum structural order in a layer. Along the trajectory ...


Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane Apr 2019

Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane

Nanoscience and Microsystems ETDs

Nanopatterns found in nature demonstrate that macroscopic properties of a surface are tied to its nano-scale structure. Tailoring the nanostructure allows those macroscopic surface properties to be engineered. However, a capability-gap in manufacturing technology inhibits mass-production of nanotechnologies based on simple, nanometer-scale surface patterns. This gap represents an opportunity for research and development of nanoimprint lithography (NIL) processes. NIL is a process for replicating patterns by imprinting a fluid layer with a solid, nano-patterned template, after which ultraviolet cure solidifies the fluid resulting in a nano-patterned surface. Although NIL has been demonstrated to replicate pattern features as small as 4 ...


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The ...


Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult ...


The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez Mar 2019

The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez

Nanoscience and Microsystems ETDs

Nanoscale transport using the kinesin-microtubule (MT) biomolecular system has been successfully used in a wide range of nanotechnological applications including self-assembly, nanofluidic transport, and biosensing. Most of these applications use the ‘gliding motility geometry’, in which surface-adhered kinesin motors attach and propel MT filaments across the surface, a process driven by ATP hydrolysis. It has been demonstrated that active assembly facilitated by these biomolecular motors results in complex, non-equilibrium nanostructures currently unattainable through conventional self-assembly methods. In particular, MTs functionalized with biotin assemble into rings and spools upon introduction of streptavidin and/or streptavidin-coated nanoparticles. Upon closer examination of these ...


Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush Dec 2018

Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush

Nanoscience and Microsystems ETDs

As a cell mediated-process, valvular heart disease (VHD) results in significant morbidity and mortality world-wide. In the US alone, valvular heart disease VHD is estimated to affect 2.5% of the population with a disproportionate impact on an increasing elderly populous. It is well understood that the primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into an osteoblastic-like phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood and a more complete characterization of VIC differentiation and phenotypic change is required before treatment of valve disease ...


Scalable, Biofunctional, Ultra-Stable Nano- Bio- Composite Materials Containing Living Cells, Patrick E. Johnson, C. Jeffrey Brinker, Graham Timmins, Jacob Agola, Jason Harper Nov 2018

Scalable, Biofunctional, Ultra-Stable Nano- Bio- Composite Materials Containing Living Cells, Patrick E. Johnson, C. Jeffrey Brinker, Graham Timmins, Jacob Agola, Jason Harper

Nanoscience and Microsystems ETDs

Three-dimensional encapsulation of cells within nanostructured silica gels or matrices enables applications as diverse as biosensors, microbial fuel cells, artificial organs, and vaccines. It also allows study of individual cell behaviors. Recent progress has improved the performance and flexibility of cellular encapsulation, yet there remains a need for robust scalable processes for large format production of cell-encapsulating materials. Here, we detail two novel techniques, that enable the large-scale production of functional Nano-Bio-Composites (NBCs) containing living cells within ordered 3-D lipid/silica nanostructures: 1) thick-casting and 2) spray drying. Furthermore, we detail a third technique for material scaling in which aqueous ...


Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen Nov 2018

Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen

Chemical and Biological Engineering ETDs

With the increasing demand on renewable energy, the fuel cell has attracted more and more interests because of its large power density and controllable size. However, the insufficiency of element abundance and unstable expensive price of conventional platinum-based electrocatalysts used in anode and cathode makes it essential to find their substitutes. As one of the most promising candidates to be used in cathode for oxygen reduction reaction (ORR), iron-nitrogen-carbon (Fe-N-C) catalysts have been widely investigated and get commercialized recently, but still lacks comprehensive understanding on the kinetic mechanism.

This dissertation has been divided into three parts with a discussion on ...


Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti Nov 2018

Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti

Shared Knowledge Conference

Ultrasonic monitoring in cementitious materials is challenging due to the high degree of attenuation. In wellbore environments, monitoring becomes more challenging due to inaccessibility. Meta materials, also known as acoustic bandgap materials, exhibit an interesting feature of forbidding the propagation of elastic/sound waves and isolate vibration in a certain frequency band. Traditionally, acoustic bandgap materials are developed with inclusions such as tin, aluminum, gold, steel in a polymer matrix. In this study, we present the development of three-dimensional cementitious sensors capable of exhibiting stopbands in the acoustic transmission spectra using carbon nanotubes. Relatively wide stopbands were engineered using Floquet-Bloch ...


Achieving High Catalytic Activity And Redox Stability Of Doped Ceria Through A Novel Sol Gel Synthesis, Christopher Riley Nov 2018

Achieving High Catalytic Activity And Redox Stability Of Doped Ceria Through A Novel Sol Gel Synthesis, Christopher Riley

Shared Knowledge Conference

Ceria is widely studied in catalysis because of its high oxygen mobility and storage capacity. These properties are enhanced by the incorporation of dopant atoms into the ceria crystal structure. However, creating a homogenously doped structure requires a suitable synthesis technique. Otherwise, dopant atoms form an oxide phase on the ceria surface, which blocks highly active catalytic sites. Traditional production methods allow for cerium and dopant ions to segregate during synthesis. In this work, we demonstrate a novel sol gel synthesis method for producing homogeneously doped ceria. The method is easy and avoids the use of hazardous chemicals. Higher dopant ...


Spectro-Electrochemical Platforms For Dynamic Analyses Of Catalytic Cascade Systems, Nalin I. Andersen Apr 2018

Spectro-Electrochemical Platforms For Dynamic Analyses Of Catalytic Cascade Systems, Nalin I. Andersen

Nanoscience and Microsystems ETDs

The development of spectro-electrochemical platforms that facilitate the dynamic analyses of complex catalytic cascade systems was explored in this research. These systems facilitated multiple modalities of catalysts and were used as platforms for monitoring catalytic transformations quasi-in situ. The analytical platforms allowed for the characterization of intermediates and products using surface-enhanced Raman spectroscopy (SERS). The design and fabrication of these devices proved to be reproducible, made of materials that can be manipulated for multiple applications, and incorporate fluid mechanics, electrochemistry, and multimodal catalysis. Microfluidic technology offers capabilities for understanding catalytic cascade systems by providing precise dynamic control of complex ...


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble ...


The Processing And Polarization Reversal Dynamics Of Thin Film Poly(Vinylidene) Fluoride, Noel Mayur Dawson Dec 2017

The Processing And Polarization Reversal Dynamics Of Thin Film Poly(Vinylidene) Fluoride, Noel Mayur Dawson

Nanoscience and Microsystems ETDs

Many ferroelectric devices benefit from the ability to deposit thin ferroelectric layers. Poly(vinylidene) fluoride (PVDF) is the prototypical ferroelectric polymer, but processing of thin film ferroelectric PVDF remains a challenge due to the formation of large voids in the film during traditional thin film processing. The research described in this dissertation starts by investigating the origin of these voids. The cause of these voids is found to be caused by vapor induced phase separation (VIPS). Guided by the thermodynamics of VIPS, a process is then designed to produce void-free ferroelectric PVDF thin films on polar and non-polar substrates. The ...


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki Nov 2017

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes ...


Incorporation Of Catalytic Modalities For Forming Of A Catalytic Cascade, Albert T. Perry Iii Nov 2017

Incorporation Of Catalytic Modalities For Forming Of A Catalytic Cascade, Albert T. Perry Iii

Nanoscience and Microsystems ETDs

This dissertation investigates the novel incorporation of inorganic and enzymatic catalysts. There is little literature on inorganic catalysts operating at biologically relevant pHs and as such a significant amount of this dissertation focuses on determination of catalyst activity. Mn amino-anitpyrene (MnAAPyr), Pt, Pt alloys, Mn-N-C and Pd catalysts on 3D graphene supports(3D-GNS), were explored for activity towards glycerol intermediates: oxalic acid, mesoxalic acid, glyoxalic acid, and formic acid. MnAAPyr was designed to mimic the reaction center of oxalate decarboxylase and oxalate oxidaze, the natural catalyst towards oxalic acid. It showed high activity towards oxalic acid, with onset potentials of ...


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading ...


Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash Jul 2017

Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash

Nanoscience and Microsystems ETDs

The behavior of charged interfaces formed in various systems like colloidal solution, fuel cells, battery, electro-deposition, catalysis is governed by the properties of electrical double layer(EDL). Civilized model with charge regulation boundary condition determined by thermodynamic equilibrium at the interface has been used to model electrical double layer and shows that size of the solvent plays a critical role in characterizing the properties of EDL using classical density functional theory.This thesis investigates the impact of ion size in electrolyte solutions on the electrical double layer formed at the interface using a similar model. It is found that ion ...


Copper Electrodeposition In Mesoscale Through-Silicon-Vias, Lyle Alexander Menk Jul 2017

Copper Electrodeposition In Mesoscale Through-Silicon-Vias, Lyle Alexander Menk

Nanoscience and Microsystems ETDs

Copper (Cu) electrodeposition (ECD) in through-silicon-vias (TSVs) is an essential technique required for high-density 3-D integration of complex semiconductor devices. The importance of Cu ECD in damascene interconnects has led to a natural development towards copper electrodeposition in TSVs. Cu ECD is preferred over alternative approaches like the chemical vapor deposition (CVD) of tungsten (W) or aluminum (Al) because Cu ECD films have lower film stress, lower processing temperatures, and more optimal thermal and electrical properties as compared with CVD W or Al.

Via filling with electroplated Cu on substrates that have undergone atomic layer deposition of a conformal platinum ...


Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont Jul 2017

Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont

Nanoscience and Microsystems ETDs

The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish ...


Waveguide-Coupled Avalanche Photodiodes For A Cmos Compatible Tranceiver Package, Nick Martinez Jul 2017

Waveguide-Coupled Avalanche Photodiodes For A Cmos Compatible Tranceiver Package, Nick Martinez

Nanoscience and Microsystems ETDs

Optical signal detection is most readily done with classical sources emitting signals

which undergo very little attenuation. Detection of signals with these power levels

benets from classical photodetectors, where the photon induced electronic signal is

discernible above the background noise. In other instances, where the optical signal

may start from an attenuated source, or in cases where the optical signal is severely

attenuated in transit, a detector which exhibits gain converts a weak optical signal

into a measurable electrical one. Detectors which convert a weak photo-generated

electrical pulse into a strong one do so through a process known as carrier ...


Role Of Vapor Phase Processes On The Sintering Of Diesel Oxidation Catalysts, Cristhian Carrillo Jul 2017

Role Of Vapor Phase Processes On The Sintering Of Diesel Oxidation Catalysts, Cristhian Carrillo

Nanoscience and Microsystems ETDs

This work provides a fundamental understanding on the vapor phase processes that govern the sintering of supported nanoparticles in relation to the diesel oxidation catalyst (DOC). Sintering is a deactivation process that affects this catalyst significantly, and many other catalyst systems. Therefore, it is important to understand the sintering mechanisms in order to improve the long term catalytic reactivity.

Pt is an active catalyst in the DOC but it sinters via Ostwald ripening to form large particles under the accelerated aging conditions (800 oC) recommended by the Department of Energy (DOE). At 800 oC in the presence of ...


Study Of Polysulfide Speciation In Lithium Sulfur Batteries Using In Situ Confocal Raman Microscopy, Josefine Mcbrayer Jul 2017

Study Of Polysulfide Speciation In Lithium Sulfur Batteries Using In Situ Confocal Raman Microscopy, Josefine Mcbrayer

Nanoscience and Microsystems ETDs

Secondary lithium sulfur (Li-S) batteries have been heavily studied in the battery community since the start of the 21st century due to their high theoretical capacity and specific energy density. The ground-breaking lithium ion battery has revolutionized society and its ability to store energy, however the lithium ion battery is reaching its limit with a theoretical capacity almost five times lower than that of lithium sulfur. With the improvement and commercialization of Li-S batteries, electric vehicles and personal electronics will have extended performance on a single charge. The viability of this promising chemistry relies on overcoming several key difficulties ...


Mechanical Characterization Of Polymer Concrete With Nanomaterials, Alaeddin Douba Jun 2017

Mechanical Characterization Of Polymer Concrete With Nanomaterials, Alaeddin Douba

Civil Engineering ETDs

Nanomaterials are defined by those whose characteristic length scale lies within the nanometer scale. Their extreme dimension achieves extraordinary mechanical properties superior to other micro and macro additives. The introduction of nanotechnology to Civil Engineering utilizes low volume inclusions of nanomaterials to alter the properties of conventionally used bulk materials. Polymer Concrete (PC) where epoxy polymer binders replace cement binders, has become a common repair material among many other application and often can be considered an alternative to Portland cement concrete (PCC). PC is often used in bridge deck overlays, manholes, machine foundations and repairs. Its diverse chemical composition and ...


A Study Of Dislocation Networks In Gasb On Gaas Using Transmission Electron Microscopy, Darryl M. Shima May 2017

A Study Of Dislocation Networks In Gasb On Gaas Using Transmission Electron Microscopy, Darryl M. Shima

Nanoscience and Microsystems ETDs

The growth of GaSb on GaAs is of interest for a variety of scientific and technological applications. Some evidence suggests that low threading dislocation density GaSb can be grown directly on GaAs through arrays of periodic edge misfit dislocations. However, significant conflicting data also exist. This work seeks to clarify the question through transmission electron microscopy analysis of GaSb grown on GaAs. The results of this work show that the single strategy of direct growth of GaSb on GaAs results in dislocation densities too high for devices. A secondary strategy of dislocation filtering layers is introduced to further reduce threading ...


Dna Directed Assembly Of Gold-Tipped Metallic Single-Walled Carbon Nanotubes Into Electrical Devices, Ronald D. Salesky Apr 2017

Dna Directed Assembly Of Gold-Tipped Metallic Single-Walled Carbon Nanotubes Into Electrical Devices, Ronald D. Salesky

Nanoscience and Microsystems ETDs

Carbon nanotubes have rightfully been regarded as a wonder material since their discovery by Iijima in 1991 and the subsequent elucidation of their many material properties. Their extreme strength is 10-fold higher than any industrial fiber. Their current density carrying capability is orders of magnitude higher than copper without failure from electromigration. Their high thermal conductivity bests diamond, and their structural versatility leads to either semiconducting or metallic electronic character. These properties all make the integration of carbon nanotubes into functional devices of high value. However, they remain a material of largely unrealized potential due to several challenges that arise ...


A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman Mar 2017

A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman

Nanoscience and Microsystems ETDs

Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed.

There has ...


Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan Nov 2016

Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan

Nanoscience and Microsystems ETDs

Infrared (IR) hybrid detector arrays and discrete detectors operated in the space environment may be subjected to a variety of sources of natural radiation while in orbit. This means IR detectors intended for applications such as space-based intelligence, surveillance, and reconnaissance (ISR) or space-situational awareness (SSA) must not only have high performance (high quantum efficiency, h and low dark-current density, JD, and preferably minimal 1/f noise content), but also their radiation tolerance or ability to withstand the effects of the radiation they would expect to encounter in space must be characterized and well understood. As the effects of ...


Applied Photoproperties Of Phenylene Ethynylenes, Patrick L. Donabedian Oct 2016

Applied Photoproperties Of Phenylene Ethynylenes, Patrick L. Donabedian

Nanoscience and Microsystems ETDs

Light-absorbing molecules can be used as powerful tools to perturb and understand biological systems by fluorescence, sensitization, or photochemical reactions. A thorough understanding of the delivery of dyes to specific biochemical targets and the processes that control the fate of excited-state energy is needed to engineer useful technology out of organic photochemistry. This thesis presents four projects investigating different aspects of pathogen destruction and biochemical sensing in a variety of systems, using the properties of p-phenylene ethynylenes (PEs), an especially flexible and well-studied class of conjugated molecules. Of particular relevance, some PEs are found to be effective dyes for amyloid ...


Visualizing Mast Cell Activation: Single Molecule Dynamics Of Early Events In Fceri Signaling, Samantha Schwartz Jun 2016

Visualizing Mast Cell Activation: Single Molecule Dynamics Of Early Events In Fceri Signaling, Samantha Schwartz

Nanoscience and Microsystems ETDs

Healthy immune cell behavior requires sensitive and robust control over the processes that regulate signal transduction. In this work we employ single molecule fluorescence imaging techniques to quantify adapter protein recruitment, lateral mobility, receptor aggregation, and cytoskeletal organization to create a better understanding of many key processes in immune cell regulation. We focus on understanding the initiating events in FceRI signaling in mast cells. Mast cell signaling encompassing a wide array of cellular outcomes including calcium flux, release of pre-formed inflammatory mediators and the production of cytokines. Careful control over appropriate reactions to external antigens is necessary for mast cells ...


Bio-Nano Interfaces: Enzyme Immobilization For Biomimetic Energy Harvesting, Rachel Hjelm Jun 2016

Bio-Nano Interfaces: Enzyme Immobilization For Biomimetic Energy Harvesting, Rachel Hjelm

Nanoscience and Microsystems ETDs

In the face of todays rapidly growing energy demands accompanied by limited, non-renewable supplies, development of novel energy alternatives that are both renewable and inexpensive has become more important than ever. Development of 3D structures exploring the properties of nano-materials and biological molecules has been shown through the years as an effective path forward for the design of advanced bio-nano architectures for enzymatic fuel cells (EFCs). Despite advantages over conventional fuel cells, EFCs still suffer from several problems including low efficiency and stability. Overcoming these limitations in order to make them more viable for real world application is an ongoing ...