Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1,544 Full-Text Articles 1,984 Authors 314,838 Downloads 54 Institutions

All Articles in Nuclear Engineering

Faceted Search

1,544 full-text articles. Page 2 of 38.

Jxb Force Effects On Beryllium Melt Splashing In Fusion Devices, Cheng Zhang, Gennady Miloshevsky 2020 Virginia Commonwealth University

Jxb Force Effects On Beryllium Melt Splashing In Fusion Devices, Cheng Zhang, Gennady Miloshevsky

Graduate Research Posters

Instability and disruption of high-temperature plasma in fusion devices may result in the edge-localized modes (ELMs) and lead to melting of plasma facing components (PFCs) causing their damage. Beryllium (Be) is used as a first wall for PFCs due to its low density, high strength, and high thermal conductivity. However, melting of Be on the surface of first wall is of a great concern as splashing of a molten Be layer will result in the plasma contamination and termination of fusion reaction. Therefore, it is important to understand the physics mechanisms characterizing the splashing of Be from a pool under ...


Spatio-Temporal Evolution Of Warm Dense Plasmas: Molecular Dynamics Modeling, Harrison Wenzel, Gennady Miloshevsky 2020 Virginia Commonwealth University

Spatio-Temporal Evolution Of Warm Dense Plasmas: Molecular Dynamics Modeling, Harrison Wenzel, Gennady Miloshevsky

Graduate Research Posters

SPATIO-TEMPORAL EVOLUTION OF WARM DENSE PLASMAS: MOLECULAR

DYNAMICS MODELING Cole Wenzel and Gennady Miloshevsky

Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, 401

West Main St, Richmond, VA 23284-3015

The exo-atmospheric detonation of nuclear device would be of great impact on the material integrity of orbiting satellites. The spectral energy distribution of high intensity X-ray flux, ~10 28 -10 35 photons/(cm 2 ∙s), originating from a nuclear blast is described by the Planck's blackbody function with the temperature from 0.1 keV to 10 keV. Particular damage would occur to the multi-layered, solar cell panels of satellites ...


Perfusion Cell Seeding And Expansion In Dual Mechanical Stimulation Bioreactor For In Vitro Tissue Development, Sarah Saunders, Sam Coles, Joao S. Soares 2020 Virginia Commonwealth University

Perfusion Cell Seeding And Expansion In Dual Mechanical Stimulation Bioreactor For In Vitro Tissue Development, Sarah Saunders, Sam Coles, Joao S. Soares

Graduate Research Posters

BACKGROUND: Engineered tissues are an exciting potential source of small diameter vascular grafts due to limited supply and patency of available alternatives. Engineered tissue vascular grafts (ETVGs) will provide physiological function that resembles native arteries and maintain the required mechanical properties as they integrate with host tissue. Mechanical stimulation during incubation encourages proper cell alignment and increases extracellular matrix deposition. The enhanced organization of the engineered tissue leads to improved compliance over synthetic alternatives without sacrificing strength and may lead to better integration in vivo.

METHODS: We have developed a bioreactor that mechanically trains grafts during incubation. To test the ...


Elastic Foundations As Heterogeneous Adventitial Boundary Condition For The Assessment Of Aortic Wall And Peri-Aortic Stiffness From Dense-Mri Data Using Inverse Fem Approach, Johane H. Bracamonte, John S. Wilson, Joao S. Soares 2020 Virginia Commonwealth University

Elastic Foundations As Heterogeneous Adventitial Boundary Condition For The Assessment Of Aortic Wall And Peri-Aortic Stiffness From Dense-Mri Data Using Inverse Fem Approach, Johane H. Bracamonte, John S. Wilson, Joao S. Soares

Graduate Research Posters

Background: The establishment of in vivo, patient-specific, and regionally resolved techniques to quantify aortic properties is key for improving risk assessment in clinical practice and scientific understanding of cardiovascular growth and remodeling. Many in vivo studies quantify vascular stiffness using Pulse Wave Velocity. This method provides an averaged measure of stiffness for the entire aorta, ignoring variations in wall stiffness and boundary conditions. Previous studies using Displacement Encoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE-MRI) suggested that the infrarenal abdominal aorta (IAA) deforms heterogeneously throughout the cardiac cycle.

Method: Herein, we hypothesize that the aortic wall strain heterogeneity is driven ...


Development Of Near-Real Time Material Detection And Analysis By Coupling Electrochemical & Optical Spectroscopy Methods For Molten Salt Systems, Hunter Andrews 2020 Virginia Commonwealth University

Development Of Near-Real Time Material Detection And Analysis By Coupling Electrochemical & Optical Spectroscopy Methods For Molten Salt Systems, Hunter Andrews

Theses and Dissertations

For both pyroprocessing and molten salt reactors (MSRs), it is desirable from a process control and nuclear safeguards perspective to monitor the species in the molten salts for material accountancy. Many traditional monitoring techniques, even simple salt sample retrieval, are time exhaustive or rendered useless for these systems due to the high thermal loads, high radiation zones, and corrosive nature of molten salts. Therefore, the main motivation for this work is the need for an online monitoring system for a molten salt system that is robust enough to handle the extreme environment yet deliver quantifiable salt concentrations. The intent of ...


A Case Study: The First Coastal Nuclear Decommissioning Project In California, Willie Aaron Quiros 2019 California Polytechnic State University, San Luis Obispo

A Case Study: The First Coastal Nuclear Decommissioning Project In California, Willie Aaron Quiros

Construction Management

San Onofre Nuclear Generating System (SONGS) is one of two nuclear power plants in California. Since the shut down in 2012, there is only one actively remaining, Diablo Canyon Nuclear Power Plant, which is set to shut down in 2024. This paper will examine the decommissioning of SONGS thus far; the first coastal nuclear decommissioning project in California’s stringent permitting process. This project was awarded as a joint venture to AECOM and Energy Solutions, both having experiencing in the field of nuclear decommissioning. This paper will outline what nuclear decommissioning challenges have been in the past; general steps of ...


Thermal Properties Of A Lif-Thf4 Molten Salt Fuel, Jackson Hill 2019 Kennesaw State University

Thermal Properties Of A Lif-Thf4 Molten Salt Fuel, Jackson Hill

Georgia Undergraduate Research Conference (GURC)

Molten salt reactors have seen an insurgence of interest and studies because of their high efficiency and their relatively compact design when compared to traditional reactors such as boiling water reactors. This study delves into the thermal properties of a LiF-ThF4 fuel for use in an MSR (Molten Salt Reactor).


Thermal Transport In Molten Salt Reactor Fuels, Bryce Atchley 2019 Kennesaw State University

Thermal Transport In Molten Salt Reactor Fuels, Bryce Atchley

Georgia Undergraduate Research Conference (GURC)

Thermal Transport in Molten Salt Reactor Fuels

Bryce Atchley, Jackson Hill, Jungkyu Park, Eduardo Farfan

In this research study, we explore the thermal transport property of Molten Salt Reactor (MSR) fuels by using molecular dynamics simulations. MSR has been drawing attention from researchers recently since it can run at high temperatures, yielding high energy production efficiency at relatively low amount of fuel mass. Its low operating pressure reduces the risk of a large break and loss of coolant significantly. Among different possible MSR fuels, LiF-ThF4 is selected to examine the thermal transport property of MSR fuels. Reverse Non-equilibrium molecular dynamics ...


Effect Of Ion Implantation On The Mechanical Properties Of The Grain And Grain Boundary Regions Of Inconel X750, Maisaa Nezar Tawfeeq 2019 The University of Western Ontario

Effect Of Ion Implantation On The Mechanical Properties Of The Grain And Grain Boundary Regions Of Inconel X750, Maisaa Nezar Tawfeeq

Electronic Thesis and Dissertation Repository

Annulus gas spacers in CANada Deuterium Uranium (CANDU) nuclear reactors are made from the heat-treated Inconel X750 Nickel-based alloy. This alloy is designed to have high strength and creep resistance at elevated temperature. Unlike other reactor designs, the CANDU reactor has a high thermal neutron fluence, which results in an enhancement of the radiation damage and the internal production of helium and hydrogen. They are thus susceptible to microstructural instability and mechanical property degradation with time. Studies of ex-service spacers have indicated that they display intergranular embrittlement and lower ultimate tensile strength compared to nonirradiated Inconel X750. The primary degradation ...


Bison Simulation-Based Identification Of Important Design Criteria For U3si2 Fuels With Composite-Monolithic Duplex Sic Cladding, Jacob A. Yingling 2019 University of South Carolina

Bison Simulation-Based Identification Of Important Design Criteria For U3si2 Fuels With Composite-Monolithic Duplex Sic Cladding, Jacob A. Yingling

Theses and Dissertations

Accident Tolerant Fuels (ATF) require a combination of fuel and cladding which have comparable longevity characteristics to UO2 while improving resistance to radiological release during and after accidents. U3Si2 has been proposed for use in ATF concepts for its high uranium density and high thermal conductivity which provide improved fuel performance. However, some of U3Si2’s material properties are not well understood. One such property, thermal creep of U3Si2, is an important contributing factor to U3Si2’s viability as an ATF. No experimentally derived thermal creep model is published for U3Si2, and previous analyses of compressive thermal creep experimental data ...


Modeling The Uranium-Silicon Phase Equilibria Based On Computational And Experimental Analysis, Tashiema Lixona Ulrich 2019 University of South Carolina

Modeling The Uranium-Silicon Phase Equilibria Based On Computational And Experimental Analysis, Tashiema Lixona Ulrich

Theses and Dissertations

As part of Accident tolerant fuel initiative, the uranium-silicide compound, U3Si2, is under consideration as a potential replacement for conventional uranium dioxide fuel. It is of interest as its higher uranium density of 11.3 g(U)/cm3 compared to 9.7 g(U)/cm3 for UO2 may allow use of more robust, but less neutronically economical fuel cladding. The improved uranium content would not only accommodate the neutronic penalty inherent to certain accident tolerant cladding concepts but also facilitate improved reactor performance with the potential for longer fuel cycles.

The U-Si system has been the subject of various studies ...


Modeling Neutron Interaction Inside A 2d Reactor Using Monte Carlo Method, A. S. M. Fakhrul Islam 2019 University of South Carolina

Modeling Neutron Interaction Inside A 2d Reactor Using Monte Carlo Method, A. S. M. Fakhrul Islam

Theses and Dissertations

Scientists and engineers have been working for many years to develop accurate approaches to analyzing nuclear power reactors using computer codes that closely model the behavior of neutrons in a reactor core. The Monte Carlo simulation method is capable of treating complex geometries with a high level of resolution and fidelity to model neutron interactions inside a reactor core. With the requirement of accurate modeling in reactor physics and dynamics and great innovation of computer technology, Monte Carlo method is becoming an ever more powerful tool and receiving rising attention. In this study, Monte Carlo method is used to model ...


Characterization And Drying Of Oxyhydroxides On Aluminum Clad Spent Nuclear Fuel, Matthew Shalloo 2019 University of South Carolina

Characterization And Drying Of Oxyhydroxides On Aluminum Clad Spent Nuclear Fuel, Matthew Shalloo

Theses and Dissertations

Research reactors such as the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) employ aluminum-clad fuel elements made up of many thin plates with uranium dispersed within. In most engineering applications, aluminum is considered to have favorable corrosion characteristics. It forms a thin oxide layer [Al2O3] under atmospheric conditions that is impenetrable to oxygen thus stopping any further corrosion. However, both aluminum metal and Al2O3 react with water to form hydrous oxides which are less protective against further corrosion and form significantly thicker layers than oxidation in dry air. As a result, aluminum-clad spent nuclear fuel (ASNF ...


Python Script For Homogeneous Aqueous Chemical Reaction Analysis And Associated Data Related To Radiolysis Simulations, Peter James Doyle, David Bartels 2019 University of Notre Dame

Python Script For Homogeneous Aqueous Chemical Reaction Analysis And Associated Data Related To Radiolysis Simulations, Peter James Doyle, David Bartels

Faculty Publications and Other Works -- Nuclear Engineering

No abstract provided.


Enabling Mobile Neutron Detection Systems With Clyc, Matthew C. Recker 2019 Air Force Institute of Technology

Enabling Mobile Neutron Detection Systems With Clyc, Matthew C. Recker

Theses and Dissertations

Cs2LiYCl6:Ce3+ (CLYC) has the desirable property of being sensitive to both gamma rays and neutrons while producing waveforms suitable for pulse shape discrimination (PSD) to determine which radiation was detected. This dissertation examines the behavior of CLYC to support its further development for mobile and portable applications. First, the feasibility of performing PSD with CLYC and an inexpensive data acquisition system was examined. This system was able to clearly distinguish both events with a figure of merit of 1.42. Next, the performance of a SiPM was compared to a traditional PMT. Analysis showed that ...


Investigations Of Point Defects In Kh2Po4 Crystals Using Ab Initio Quantum Methods, Tabitha E. R. Dodson 2019 Air Force Institute of Technology

Investigations Of Point Defects In Kh2Po4 Crystals Using Ab Initio Quantum Methods, Tabitha E. R. Dodson

Theses and Dissertations

Potassium dihydrogen phosphate (KH2PO4, or commonly called KDP) crystals can be grown to large sizes and are used for many important devices (fast optical switches, frequency conversion, polarization rotation) for high powered lasers. The nonlinear optical material has a wide intrinsic transparency range. Intrinsic point defects are responsible for several short-lived absorption bands in the visible and ultraviolet regions that affect high-power pulsed laser propagation. The primary intrinsic defects have been experimentally detected in KDP using electron paramagnetic resonance (EPR) experiments. The defect models established thus far include (i) self-trapped holes, (ii) oxygen vacancies, and (iii) hydrogen ...


Point Defects In Lithium Gallate And Gallium Oxide, Christopher A. Lenyk 2019 Air Force Institute of Technology

Point Defects In Lithium Gallate And Gallium Oxide, Christopher A. Lenyk

Theses and Dissertations

Electron paramagnetic resonance (EPR), Fourier-Transform Infrared spectroscopy (FTIR), photoluminescence (PL), thermoluminescence (TL), and wavelength-dependent TL are used to identify and characterize point defects in lithium gallate and β-gallium oxide doped with Mg and Fe acceptor impurities single crystals. EPR investigations of LiGaO2 identify fundamental intrinsic cation defects lithium (VLi) and gallium (V2−Ga) vacancies. The defects’ principle g values are found through angular dependence studies and atomic-scale models for these new defects are proposed. Thermoluminescence measurements estimate the activation energy of lithium vacancies at Ea = 1.05 eV and gallium vacancies at Ea > 2 eV below the ...


Methods Of Use And Manufacture Of Silver-Doped, Nano-Porous Hydroxyapatite, Cheol-Woon Kim, Richard K. Brow 2019 Missouri University of Science and Technology

Methods Of Use And Manufacture Of Silver-Doped, Nano-Porous Hydroxyapatite, Cheol-Woon Kim, Richard K. Brow

Mining and Nuclear Engineering Faculty Research & Creative Works

A silver-doped, nano-porous hydroxyapatite material is provided that can be utilized to capture radioactive iodine, 129I. Methods of using the silver-doped, nano-porous hydroxyapatite material to remove radioactive iodine, and methods of manufacturing the material are also provided.


Experimental Investigation Of Steady-State And Transient Flow Boiling Critical Heat Flux, Soon Kyu Lee 2019 University of New Mexico

Experimental Investigation Of Steady-State And Transient Flow Boiling Critical Heat Flux, Soon Kyu Lee

Nuclear Engineering ETDs

The Critical Heat Flux (CHF) causes a rapid reduction of heat transfer coefficient with a rapid increase of cladding temperature, which may induce physical failure of the heated material. Understanding CHF phenomena and reliable prediction of the boiling behavior are needed to design a heat transfer system including nuclear reactors. Due to the complex nature of CHF, it is still an active research topic of interest. With an increasing interest in Accident Tolerant Fuel (ATF), CHF of ATF is essential topic of study for the detailed design of the fuel – cladding element and for the reactor safety analysis.

In this ...


The Blue Emission At 2.8 Ev In Strontium Titanate: Evidence For A Radiative Transition Of Self-Trapped Excitons From Unbound States, Miguel L. Crespillo, Joseph T. Graham, Fernando Agullo-Lopez, Y. Zhang, William J. Weber 2019 Missouri University of Science and Technology

The Blue Emission At 2.8 Ev In Strontium Titanate: Evidence For A Radiative Transition Of Self-Trapped Excitons From Unbound States, Miguel L. Crespillo, Joseph T. Graham, Fernando Agullo-Lopez, Y. Zhang, William J. Weber

Mining and Nuclear Engineering Faculty Research & Creative Works

The origin of the blue emission in SrTiO3 has been investigated as a function of irradiation fluence, electronic excitation density, and temperature using a range of ion energies and masses. The emission clearly does not show correlation with the concentration of vacancies generated by irradiation but is greatly enhanced under heavy-ion irradiation. The intensity ratio of the 2.8 and 2.5 eV bands is independent of fluence at all temperatures, but it increases with excitation rate. The 2.8 eV emission is proposed to correspond to a transition from conduction band states to the ground state level of ...


Digital Commons powered by bepress