Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,865 Full-Text Articles 8,082 Authors 1,425,719 Downloads 112 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,865 full-text articles. Page 82 of 158.

Fabrication And Material Characterization Of Copper And Copper-Cnt Micropillars, Siavash Ghanbari, Jeff Darabi 2015 Southern Illinois University Edwardsville

Fabrication And Material Characterization Of Copper And Copper-Cnt Micropillars, Siavash Ghanbari, Jeff Darabi

SIUE Faculty Research, Scholarship, and Creative Activity

In this work, copper micropillars and copper-carbon nanotube (CNT) composite micropillars were fabricated by incorporating an electrodeposition technique with a xurography process. In order to disperse carbon nanotubes in copper-CNT micropillars, various amounts of CNTs were added to the electroplating bath. Surface morphology and phase characterization of copper micropillars and copper-CNT composite micropillars were analyzed by optical microscopy and X-ray diffraction. In addition, the corrosion resistance (Rp) of a bare copper substrate, copper micropillars, and optimum copper-CNT micropillars were studied by electrochemical impedance spectroscopy (EIS) technique in a 3.5 wt. % sodium chloride. Experimental results yielded a corrosion …


Energy Harvesting-Aware Design For Wireless Nanonetworks, Shahram Mohrehkesh 2015 Old Dominion University

Energy Harvesting-Aware Design For Wireless Nanonetworks, Shahram Mohrehkesh

Computer Science Theses & Dissertations

Nanotechnology advancement promises to enable a new era of computing and communication devices by shifting micro scale chip design to nano scale chip design. Nanonetworks are envisioned as artifacts of nanotechnology in the domain of networking and communication. These networks will consist of nodes of nanometer to micrometer in size, with a communication range up to 1 meter. These nodes could be used in various biomedical, industrial, and environmental monitoring applications, where a nanoscale level of sensing, monitoring, control and communication is required. The special characteristics of nanonetworks require the revisiting of network design. More specifically, nanoscale limitations, new paradigms …


Nano Scale Mechanical Analysis Of Biomaterials Using Atomic Force Microscopy, Diganta Dutta 2015 Old Dominion University

Nano Scale Mechanical Analysis Of Biomaterials Using Atomic Force Microscopy, Diganta Dutta

Mechanical & Aerospace Engineering Theses & Dissertations

The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed …


High Density, Vertically-Aligned Carbon Nanotube Membranes, Miao Yu, H. Funke, J. Falconer, R. Noble 2015 University of South Carolina - Columbia

High Density, Vertically-Aligned Carbon Nanotube Membranes, Miao Yu, H. Funke, J. Falconer, R. Noble

Miao Yu

No abstract provided.


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook 2015 California Polytechnic State University - San Luis Obispo

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth For Efficient Hybrid Perovskite Solar Cells, Cheng Bi, Qi Wang, Yongbo Yuan, Zhengguo Xiao, Jinsong Huang 2015 University of Nebraska-Lincoln

Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth For Efficient Hybrid Perovskite Solar Cells, Cheng Bi, Qi Wang, Yongbo Yuan, Zhengguo Xiao, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in …


Computer Simulations Of Propulsion Of Self-Propelled Flexible Nanobody, Ye Luo 2015 Western Michigan University

Computer Simulations Of Propulsion Of Self-Propelled Flexible Nanobody, Ye Luo

Masters Theses

Swimming bodies such as flagellum and fishes are found everywhere in liquid environment. The research of simulation of swimmers is one of the most important branches among the field of biophysics. This study focus on the direct computer simulation of self-propelled flexible nanobody in fluid field. Two new objectives is studied based on the previous research of Tai-hsien Wu and Dewei ai (2014)[1]. ln Wu's article, the front end of micro swimming body is fixed and the migration of swimmers is neglected. For a further study, one of new targets is to release the head in 3-D simulation fluid area. …


Studies Of Periodic And Quasiperiodic Gold Nanohole Arrays And Their Applications, Zhaoliang Yang 2015 The University of Western Ontario

Studies Of Periodic And Quasiperiodic Gold Nanohole Arrays And Their Applications, Zhaoliang Yang

Electronic Thesis and Dissertation Repository

Wavelength to refractive index sensitivity and resonance wavelength position are two very important performance characteristics for nanohole array based surface plasmon resonance sensors while these characteristics are mostly researched on periodic nanohole arrays, instead of quasiperiodic nanohole arrays. This thesis deduces theoretical equations about the wavelength to refractive index sensitivity and resonance wavelength position of quasiperiodic nanohole arrays. Theoretical analysis shows that wavelength to refractive index sensitivity is not associated with geometry pattern, hole size or pitch but with the wavelength. A novel surface plasmon resonance platform is built by transferring gold films patterned with quasiperiodic nanohole arrays to the …


Measuring The Effectiveness Of Photoresponsive Nanocomposite Coatings On Aircraft Windshields To Mitigate Laser Intensity, Ryan S. Phillips, Hubert K. Bilan, Zachary X. Widel, Randal J. DeMik, Samantha J. Brain, Matthew Moy, Charles Crowder, Stanley L. Harriman, James T. O'Malley III, Joseph E. Burlas, Steven F. Emmert, Jason J. Keleher 2015 Lewis University

Measuring The Effectiveness Of Photoresponsive Nanocomposite Coatings On Aircraft Windshields To Mitigate Laser Intensity, Ryan S. Phillips, Hubert K. Bilan, Zachary X. Widel, Randal J. Demik, Samantha J. Brain, Matthew Moy, Charles Crowder, Stanley L. Harriman, James T. O'Malley Iii, Joseph E. Burlas, Steven F. Emmert, Jason J. Keleher

Journal of Aviation Technology and Engineering

In 2004, pilots reported 46 laser illumination events to the Federal Aviation Administration (FAA), with the number increasing to approximately 3,600 in 2011. Since that time, the number of reported laser incidents has ranged from 3,500 to 4,000. Previous studies indicate the potential for flight crewmember distraction from bright laser light being introduced to the cockpit. Compositional variations of the photoresponsive nanocomposite coatings were applied to an aircraft windscreen using a modified liquid dispersion/heating curing process. The attenuating effects of the deposited films on laser light intensity were evaluated using an optical power meter and the resultant laser intensity data …


Alloy Solute Interactions At Grain Boundaries And Nanoscale Interfaces In Copper, Luke Prestowitz 2015 University at Albany, State University of New York

Alloy Solute Interactions At Grain Boundaries And Nanoscale Interfaces In Copper, Luke Prestowitz

Nanoscale Science & Engineering (discontinued with class year 2014)

To study grain boundary solute interactions we have developed recipes for co-electrodeposition of dilute copper alloys including Cu(Ni) and Cu(Co). Secondary Ion Mass Spectrometry (SIMS) was used to analyze the incorporation of solute into the copper film. In addition to the co-electrodeposition process we also used a drive-in diffusion model for Au, Ag, Co, and Ni. Atomic imaging in a scanning transmission electron microscope (STEM) was used to visualize and investigate solute at grain boundaries and interfaces in polygranular copper films. By understanding these interactions and pathways of alloying solutes in copper microstructures, we can more accurately predict alloying behavior …


Organometallic Carboxylate Resists For Euv With High Sensitivity, James Passarelli 2015 University at Albany, State University of New York

Organometallic Carboxylate Resists For Euv With High Sensitivity, James Passarelli

Nanoscale Science & Engineering (discontinued with class year 2014)

We have developed organometallic carboxylate compounds [RnM(O2CR’)2] capable of acting as negative-tone EUV resists. Overall, the best and fastest resists contain antimony, are pentavalent and the carboxylate group contains a polymerizable olefin (e.g. acrylate, methacrylate or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of molecules of the type RnM(O2CR’)2 where we have studied seven R groups, four main group metals (M), and three polymerizable carboxylate groups (O2CR’). We found that the greatest predictor of sensitivity of the RnSb(O2CR’)2 resists is their level of …


Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, UPM Ashik, WMA Wan Daud 2015 Univerity of Malaya

Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, Upm Ashik, Wma Wan Daud

upm ashik

Co-precipitation cum modified Stöber method is a continuous process avoiding application of higher temperature treatment before supporting nanometal with SiO2, irrespective of pre-preparation methods. We have conducted the co-precipitation process without undertaking calcination under air in order to avoid even a partial particle agglomeration and hence maintained average particle size [similar]30 nm after enforcing with SiO2. This is the first report adopting such an unceasing preparation for preparing metal/silicate nanostructures. Furthermore, n-Ni/SiO2 nanostructured catalysts were used for thermocatalytic decomposition of methane to produce hydrogen and carbon nanotubes. The catalyst was found to be very stable and the methane transformation activity …


Resonant Spectra Of Metal Nanotoroids Of Various Sizes, Huong Quynh Tran 2015 University of Arkansas, Fayetteville

Resonant Spectra Of Metal Nanotoroids Of Various Sizes, Huong Quynh Tran

Electrical Engineering Undergraduate Honors Theses

Nowadays, the manipulation of light by using metallic nanostructures has wide applications in photonics, optoelectronics and energy conversion. Along with other universities all over the world, the University of Arkansas is researching on nano-antennas’ design, fabrication and applications. Current research in Dr. El-Shenawee’s Terahertz Imaging and Spectroscopy Computational Electromagnetics Group, has computationally investigated the behaviors of plasmonic nanostructures by using the commercial finite element electromagnetic solver Ansys® HFSS. This work reproduced the previous work of spectral absorption enhancement of infinite and finite arrays of silver and gold nanotoroids with sizes of the inner radii: 13nm – 21nm, while outer radius …


Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari 2015 University of Arkansas, Fayetteville

Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

There has been a growing interest in using low cost material as a substrate for the large grained polycrystalline silicon photovoltaic devices. The main property of those devices is the potential of obtaining high efficiency similar to crystalline Si devices efficiency yet at much lower cost because of the thin film techniques. Epitaxial growth of Si at low temperatures on low cost large grained seed layers, prepared by aluminum induced crystallization method (AIC), using hot wire chemical vapor deposition (HWCVD) system is investigated in this thesis. In this work, different parameters have been studied in order to optimize the growth …


Large-Scale Graphene Film Deposition For Monolithic Device Fabrication, Khaled Al-Shurman 2015 University of Arkansas, Fayetteville

Large-Scale Graphene Film Deposition For Monolithic Device Fabrication, Khaled Al-Shurman

Graduate Theses and Dissertations

Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors.

The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an …


Inertial Force-Driven Synthesis Of Near-Infrared Plasmonic Nanosphere Composites: Physicochemical Characterizations, Joseph Noel Batta-Mpouma 2015 University of Arkansas, Fayetteville

Inertial Force-Driven Synthesis Of Near-Infrared Plasmonic Nanosphere Composites: Physicochemical Characterizations, Joseph Noel Batta-Mpouma

Graduate Theses and Dissertations

Near-infrared (NIR) responsive nanoparticles (NPs) like gold nanorods (GNRs) are important in biomedical fields because of their transparency for biological tissues. Although GNRs are sought after as contrast agents for theranostics in cancer studies, capping ligands like cetyltrimethylammonium bromide (CTAB) for the GNR synthesis are toxic for biological tissues. The need for an alternative to toxic GNRs is of interest to alleviate the problem.

This work aimed to optimize the synthesis of NIR responsive nanosphere composites (NSCs) by inertial force (g-force) using colloidal gold NPs as model, elucidate the mechanism for the NSC formation, and study their detailed physicochemical characteristics. …


Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang 2015 University of Nebraska–Lincoln

Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Characterization of the structural and optical properties is a subject of significance for nanoporous material research. However, it remains a challenge to find non-destructive methods for investigating the anisotropy of porous thin films with three-dimensional nanostructures. In this thesis, a generalized ellipsometry (GE) analysis approach is employed to study two types of anisotropic nanoporous media: slanted columnar thin films (SCTFs) with polymer infiltration and inverse-SCTF polymeric films. The thesis presents the physical properties obtained from GE analysis, including porosity, columnar shape, principal optical constants, birefringence, etc.

The thesis reports on using a GE analysis approach, combining the homogeneous biaxial layer …


Tio 2 Fibers: Tunable Polymorphic Phase Transformation And Electrochemical Properties, Edna Garcia, Qiang Li, Xing Sun, Karen Lozano, Yuanbing Mao 2015 The University of Texas Rio Grande Valley

Tio 2 Fibers: Tunable Polymorphic Phase Transformation And Electrochemical Properties, Edna Garcia, Qiang Li, Xing Sun, Karen Lozano, Yuanbing Mao

Chemistry Faculty Publications and Presentations

A series of one-dimensional (1D) nanoparticle-assembled TiO2 fibers with tunable polymorphs were prepared via a novel and large scale ForceSpinning® process of titanium tetraisopropoxide (TTIP)/polyvinylpyrrolidone (PVP) precursor fibers followed with a thermal treatment at various calcinations temperatures. The thermal and structural transformations were characterized by thermogravimetric analysis/differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction. The influence of polymorphic phase of the TiO2 fibers on the electrochemical performance in neutral aqueous 1 M Na2SO4 electrolyte was investigated. The polymorphic amorphous/anatase/rutile TiO2 fibers prepared at 450 °C achieved a highest capacitance of 21.2 F g−1 (6.61 mF cm−2) at a current …


Use Of Precisely Sculptured Thin Film (Stf) Substrates With Generalized Ellipsometry To Determine Spatial Distribution Of Adsorbed Fibronectin To Nanostructured Columnar Topographies And Effect On Cell Adhesion, Tadas Kasputis, Alex Pieper, Keith Brian Rodenhausen, Daniel Schmidt, Derek Sekora, Charles Rice, Eva Schubert, Mathias Schubert, Angela K. Pannier 2015 University of Nebraska-Lincoln

Use Of Precisely Sculptured Thin Film (Stf) Substrates With Generalized Ellipsometry To Determine Spatial Distribution Of Adsorbed Fibronectin To Nanostructured Columnar Topographies And Effect On Cell Adhesion, Tadas Kasputis, Alex Pieper, Keith Brian Rodenhausen, Daniel Schmidt, Derek Sekora, Charles Rice, Eva Schubert, Mathias Schubert, Angela K. Pannier

Department of Biological Systems Engineering: Papers and Publications

Sculptured thin film (STF) substrates consist of nanocolumns with precise orientation, intercolumnar spacing, and optical anisotropy, which can be used as model biomaterial substrates to study the effect of homogenous nanotopographies on the three-dimensional distribution of adsorbed proteins. Generalized ellipsometry was used to discriminate between the distributions of adsorbed FN either on top of or within the intercolumnar void spaces of STFs, afforded by the optical properties of these precisely crafted substrates. Generalized ellipsometry indicated that STFs with vertical nanocolumns enhanced total FN adsorption two-fold relative to flat control substrates and the FN adsorption studies demonstrate different STF characteristics influence …


In Vitro Studies Of Gold And Gold Silica Nanoparticle Radiosensitization With Kilovoltage X-Rays, Gregory Colarch 2015 University of Nevada, Las Vegas

In Vitro Studies Of Gold And Gold Silica Nanoparticle Radiosensitization With Kilovoltage X-Rays, Gregory Colarch

UNLV Theses, Dissertations, Professional Papers, and Capstones

Technological advances in the ability to construct and manipulate nanoscale particles have opened up the possibility of using solid metallic nanoparticles and mixed metal nanoshells as a means to increase dose enhancement and treatment efficacy to tumors. In order for nanoparticles to be an effective form of treatment, they must be delivered to tumors in sufficient concentrations so that there is a dose enhancement factor due to ionizing radiation, as well as being essentially non-toxic to healthy cells. Gold nanoparticles and silica-gold nanoshells fit these requirements. Gold has a high atomic number (Z=79), which gives a larger cross section for …


Digital Commons powered by bepress