Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

736 Full-Text Articles 1359 Authors 145315 Downloads 64 Institutions

All Articles in Engineering Physics

Faceted Search

736 full-text articles. Page 1 of 23.

Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 2-A], Alexander Banaszak, Tyler Smith 2016 Western Kentucky University

Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 2-A], Alexander Banaszak, Tyler Smith

Posters-at-the-Capitol

Raman scattering signal enhancement that uses graphene as support, graphene-enhanced Raman scattering (GERS), is a recent phenomenon. It can produce clean and reproducible Raman signals of chemical molecules with significantly enhanced signal intensity in contrast to traditional surface- (SERS) and tip- enhanced Raman scattering (TERS) techniques. While enhancement in SERS and TERS arise due to the electromagnetic mechanism, GERS also relies on a chemical mechanism and therefore shows unique molecular sensitivity and selectivity. In this work, we developed graphene materials decorated with noble metal (silver and gold) nanoparticles for detection of different chemical molecules e.g. methylene blue (MB) and ...


Bio-Assembled Nano-Composites As High-Density Energy Storage Materials, Xixiang Zhang, Yingbang Yao 2016 King Abdullah University of Science and Technology (KAUST)

Bio-Assembled Nano-Composites As High-Density Energy Storage Materials, Xixiang Zhang, Yingbang Yao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Targeting Residential Energy Reduction For City Utilities Using Historical Electrical Utility Data And Readily Available Building Data, Kevin P. Hallinan, J. Kelly Kissock, Robert J. Brecha, Austin Mitchell 2016 University of Dayton

Targeting Residential Energy Reduction For City Utilities Using Historical Electrical Utility Data And Readily Available Building Data, Kevin P. Hallinan, J. Kelly Kissock, Robert J. Brecha, Austin Mitchell

J. Kissock

Energy use data for the eight-year period 2003–2010 was analyzed for over 1200 single family residences in Village of Yellow Springs, Ohio. Electricity, natural gas, residential building, and weather databases are merged to permit determination of the energy intensity of each home in the village. The energy use intensity for each home is disaggregated into weather independent and weather dependent electric and natural gas use. This use is compared to typical baseline, cooling, and heating energy use for the region. From this comparison, priority homes are identified for energy reduction investment. Collective potential low cost energy reduction is estimated ...


Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock 2016 University of Dayton

Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock

J. Kissock

Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home ...


Quantum Cascade Laser Measurements Of Line Intensities, N2-, O2- And Ar- Collisional Broadening Coefficients Of N2o In The L3 Band Near 4.5 Μm, Et-touhami Es-sebbar, Meriem Meriem Deli, Aamir Farooq 2016 Paul Scherrer Institute (PSI)

Quantum Cascade Laser Measurements Of Line Intensities, N2-, O2- And Ar- Collisional Broadening Coefficients Of N2o In The L3 Band Near 4.5 Μm, Et-Touhami Es-Sebbar, Meriem Meriem Deli, Aamir Farooq

Dr. Et-touhami Es-sebbar

This study deals with precise measurements of absolute line intensities, N2-, O2- and Ar- collisional broadening coefficients of N2O in the P-branch of the ν3 vibrational band near 4.5 µm. Collisional broadening coefficients of N2O-air are derived from the N2- and O2- broadening contributions by considering an ideal atmospheric composition. Studies are performed at room temperature for 10 rotational transitions over 2190–2202 cm–1 spectral range using a distributed-feedback quantum cascade laser. To retrieve spectroscopic parameters for each individual transition, measured absorption line shape is simulated within Voigt and Galatry profiles. The obtained results compare well with previous ...


Koh Etching Of (100) Si Wafer, No 2, Inayat Bajwa 2016 Quattrone Nanofabrication Facility

Koh Etching Of (100) Si Wafer, No 2, Inayat Bajwa

Protocols and Reports

This report describes KOH etching of (100) Si wafer through a hard mask of silicon oxide, and reveals that the scattered etch rate is ascribed to the etch rates of the different crystal planes exposed during the etching.


Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner 2016 Western Kentucky University

Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner

Mikhail Khenner

Morphological instability of a planar surface ([111], [011], or [001]) of an ultra-thin metal film is studied in a parameter space formed by three major effects (the quantum size effect, the surface energy anisotropy and the surface stress) that influence a film dewetting. The analysis is based on the extended Mullins equation, where the effects are cast as functions of the film thickness. The formulation of the quantum size effect (Z. Zhang et al., PRL 80, 5381 (1998)) includes the oscillation of the surface energy with thickness caused by electrons confinement. By systematically comparing the effects, their contributions into the ...


Preliminary Results From A Ground Based Magnetometer Rotation Table, Rachel Newman, April Gross, Jolene Johnson, Kaye Smith, Erick Agrimson, James Flaten 2016 St. Catherine University

Preliminary Results From A Ground Based Magnetometer Rotation Table, Rachel Newman, April Gross, Jolene Johnson, Kaye Smith, Erick Agrimson, James Flaten

2016 Academic High Altitude Conference

Understanding high altitude balloon rotation is important for many types of scientific measurements, therefore, balloon and payload rotation is a continuing area of interest and research. In this work, we present results obtained from an Arduino logged magnetometer rotated on a ground based rotation table. This table allowed us to precisely rotate and locate the Arduino logged magnetometer. We compare the Arduino logged results with “known magnetic field orientation” using an AIM rocketry altimeter. This comparison allowed us to test the accuracy of our Arduino logged results and the sampling capabilities of our magnetometer system using different rotational speeds.


Abstracts From The 2016 Ahac Conference, Erick Agrimson 2016 DePaul University

Abstracts From The 2016 Ahac Conference, Erick Agrimson

2016 Academic High Altitude Conference

This is a listing of Abstracts from AHAC 2016


Ferromagnetic Quantum Critical Point Avoided By The Appearance Of Another Magnetic Phase In Lacrge3 Under Pressure, Valentin Taufour, Udhara S. Kaluarachchi, Rustem Khasanov, Manh Cuong Nguyen, Zurab Guguchia, Pabitra Kumar Biswas, Pietro Bonfà, Roberto De Renzi, Xiao Lin, Stella K. Kim, Eun Deok Mun, Hyunsoo Kim, Yuji Furukawa, Cai-Zhuang Wang, Kai-Ming Ho, Sergey L. Bud'ko, Paul C. Canfield 2016 Ames Laboratory

Ferromagnetic Quantum Critical Point Avoided By The Appearance Of Another Magnetic Phase In Lacrge3 Under Pressure, Valentin Taufour, Udhara S. Kaluarachchi, Rustem Khasanov, Manh Cuong Nguyen, Zurab Guguchia, Pabitra Kumar Biswas, Pietro Bonfà, Roberto De Renzi, Xiao Lin, Stella K. Kim, Eun Deok Mun, Hyunsoo Kim, Yuji Furukawa, Cai-Zhuang Wang, Kai-Ming Ho, Sergey L. Bud'ko, Paul C. Canfield

Ames Laboratory Publications

The temperature-pressure phase diagram of the ferromagnet LaCrGe3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGe3 ...


Instrumentation Of A Self-Correcting Data Acquisition System For Ultrafast Lasers, Fabricio S. Marin 2016 DePaul University

Instrumentation Of A Self-Correcting Data Acquisition System For Ultrafast Lasers, Fabricio S. Marin

DePaul Discoveries

Optical phenomenon in semiconductors and other light-sensitive materials typically happen at very short time durations, and require instruments capable of measuring time resolutions on the order of nanoseconds to femtoseconds. Electronics can only measure up to nanosecond-time lengths. The purpose of this summer research project is to design a system capable of achieving variable time delays with resolutions up to femtosecond range to use in time-resolved experiments with the pump-probe technique. The time delay is achieved using a delay stage driven by a micro stepper-motor which moves in variable increments while an encoder counts the steps and tells a computer ...


Targeting Residential Energy Reduction For City Utilities Using Historical Electrical Utility Data And Readily Available Building Data, Kevin P. Hallinan, J. Kelly Kissock, Robert J. Brecha, Austin Mitchell 2016 University of Dayton

Targeting Residential Energy Reduction For City Utilities Using Historical Electrical Utility Data And Readily Available Building Data, Kevin P. Hallinan, J. Kelly Kissock, Robert J. Brecha, Austin Mitchell

Kevin Hallinan

Energy use data for the eight-year period 2003–2010 was analyzed for over 1200 single family residences in Village of Yellow Springs, Ohio. Electricity, natural gas, residential building, and weather databases are merged to permit determination of the energy intensity of each home in the village. The energy use intensity for each home is disaggregated into weather independent and weather dependent electric and natural gas use. This use is compared to typical baseline, cooling, and heating energy use for the region. From this comparison, priority homes are identified for energy reduction investment. Collective potential low cost energy reduction is estimated ...


Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock 2016 University of Dayton

Prioritizing Investment In Residential Energy Efficiency And Renewable Energy: A Case Study For The U.S. Midwest, Robert J. Brecha, Austin Mitchell, Kevin P. Hallinan, J. Kelly Kissock

Kevin Hallinan

Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home ...


Cost-Availability Curves For Hierarchical Implementation Of Residential Energy-Efficiency Measures, Roman Villoria-Siegert, Philip Brodrick, Kevin P. Hallinan, Robert J. Brecha 2016 University of Dayton

Cost-Availability Curves For Hierarchical Implementation Of Residential Energy-Efficiency Measures, Roman Villoria-Siegert, Philip Brodrick, Kevin P. Hallinan, Robert J. Brecha

Kevin Hallinan

Historical residential electricity data and natural gas consumption data were collected for, respectively, 1,200 and 178 residences in a small town in the USA. These data were merged with local building and weather databases, and energy consumption models were developed for each residence, revealing substantial variation in heating and cooling intensity. After estimating approximate physical building characteristics, energy profiles for each residence were calculated, and savings from adoption of the most cost-effective energy-efficiency measures for each residence were estimated. Effectively, we wish to leverage commonly available data sets to infer characteristics of building envelopes and equipment, without the need ...


Model For Computing Kinetics Of The Graphene Edge Epitaxial Growth On Copper, Mikhail Khenner 2016 Western Kentucky University

Model For Computing Kinetics Of The Graphene Edge Epitaxial Growth On Copper, Mikhail Khenner

Mikhail Khenner

A basic kinetic model that incorporates a coupled dynamics of the carbon atoms and dimers on a copper
surface is used to compute growth of a single-layer graphene island. The speed of the island’s edge advancement
on Cu[111] and Cu[100] surfaces is computed as a function of the growth temperature and pressure. Spatially
resolved concentration profiles of the atoms and dimers are determined, and the contributions provided by these
species to the growth speed are discussed. Island growth under the conditions of a thermal cycling is studied.


Model For The Electrolysis Of Water And Its Use For Optimization, Roger Lascorz, Javier E. Hasbun Dr 2016 Georgia Institute of Technology

Model For The Electrolysis Of Water And Its Use For Optimization, Roger Lascorz, Javier E. Hasbun Dr

Georgia Journal of Science

The goal of this research was to study the optimization of the electrolysis of water both theoretically and experimentally. For accuracy, 3 hr experiments were made with measurements recorded every 15 min. The results show that a better model than the classical one is needed for water electrolysis. A new model that fits experimental data better is proposed. The results of this new model not only predict hydrogen production in electrolysis of water better, but show a way to predict gas production of any liquid as well as what voltage to use to optimize it.


Experimental Building Demonstration Model With Viscous Fluid Dampers, Blake Thomas Reeve, Brianna Jean Kufa, Aden Malek Stepanians, Sophie Carmion Ratkovich 2016 California Polytechnic State University, San Luis Obispo

Experimental Building Demonstration Model With Viscous Fluid Dampers, Blake Thomas Reeve, Brianna Jean Kufa, Aden Malek Stepanians, Sophie Carmion Ratkovich

Architectural Engineering

The Architectural Engineering major places a heavy emphasis on structural dynamics and the role of wind and seismic loading in building analysis and design. Buildings of high importance that are critical to community function, such as hospitals, often utilize supplemental damping devices like supplemental viscous fluid dampers or base isolators to reduce the overall demands on the structural system. The design and analysis of these dampers are typically not taught at the undergraduate level, and is frequently performed by mechanical engineers, in lieu of structural engineers.

To better understand and research building behavior with supplemental damping devices, our multi-disciplinary team ...


Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas 2016 Macalester College

Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas

Macalester Journal of Physics and Astronomy

ZnO thin films that function as either transparent conducting oxides in solid-state photovoltaic cells or as nanocrystalline dye-absorbers in dye-sensitized solar cells have the potential to reduce the cost of producing electricity from solar energy. Although there exist many methods to produce ZnO thin films, the most economical and practical method may be oxidation of metallic Zn thin films. This research examined the utility of ex-situ thermal oxidation of DC magnetron sputtered Zn thin films in generating useful ZnO thin films for these photovoltaic applications. We annealed Zn thin films in air at 570° C in order to produce ZnO ...


Enhanced Adhesion Of Superhydrophobic Zno Surface, liqiu zheng Dr., Chan Kwaichow B. 2016 Albany State University

Enhanced Adhesion Of Superhydrophobic Zno Surface, Liqiu Zheng Dr., Chan Kwaichow B.

Georgia Journal of Science

The superhydrophobicity and the strong solid-liquid adhesion of the dually structured ZnO surface are attributed to the suitable size of microstructure and nanostructure. This phenomenon, so different from the Lotus effect, can be called the Petal effect— the super hydrophobicity and the enhanced solid-liquid adhesion coexist on the same surface. The Cassie impregnating model was proposed to understand the underlying reason.


Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter 2016 Linfield College

Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter

Senior Theses

The bifacial solar cell is superior to its monofacial predecessor due to its ability to convert both incident light on top and reflected light from below into energy. The scattering of the reflected light is affected by the property of the material on which it is interacting. To date, little work has been contributed to studying the properties of these materials to determine optimal quantities for bifacial solar cells. In the first experiment, reflective efficiencies compared to the angle of reflection were explored for different grit of sandpaper in order to develop an understanding of how surface texture impacts reflectivity ...


Digital Commons powered by bepress