Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

853 Full-Text Articles 1,740 Authors 196,060 Downloads 79 Institutions

All Articles in Engineering Physics

Faceted Search

853 full-text articles. Page 1 of 29.

Augustana Invitational Robotics Challenge 2018, Forrest Stonedahl 2018 Augustana College, Rock Island Illinois

Augustana Invitational Robotics Challenge 2018, Forrest Stonedahl

Celebration of Learning

We will be hosting the 3rd Annual Augustana Invitational Robotics Challenge. This event will involve student teams from Augustana and potentially several other schools in the region bringing forth the robots that they have designed, built, and programmed, to compete against one another. This year's challenge task involves the careful relocation of soda pop cans.


Phase Field Study Of Surface-Induced Melting And Solidification From A Nanovoid: Effect Of Dimensionless Width Of Void Surface And Void Size, Anup Basak, Valery I. Levitas 2018 Iowa State University

Phase Field Study Of Surface-Induced Melting And Solidification From A Nanovoid: Effect Of Dimensionless Width Of Void Surface And Void Size, Anup Basak, Valery I. Levitas

Physics and Astronomy Publications

The size effect and the effects of a finite-width surface on barrierless transformations between the solid (S), surface melt (SM), and melt (M) from a spherical nanovoid are studied using a phase field approach. Melting (SM → M and S → M) from the nanovoid occurs at temperatures which are significantly greater than the solid-melt equilibrium temperature θe but well below the critical temperature for solid instability. The relationships between the SM and M temperatures and the ratio of the void surface width and width of the solid-melt interface, Δ⎯⎯⎯, are found for the nanovoids of different sizes. Below a critical ratio ...


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack 2018 University of Arkansas, Fayetteville

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition ...


Synthesis And Characterization Of Ca-Doped Lamnaso, Yong Liu, Warren E. Straszheim, Pinaki Das, Farhan Islam, Thomas W. Heitmann, Robert McQueeney, David Vaknin 2018 Ames Laboratory

Synthesis And Characterization Of Ca-Doped Lamnaso, Yong Liu, Warren E. Straszheim, Pinaki Das, Farhan Islam, Thomas W. Heitmann, Robert Mcqueeney, David Vaknin

Ames Laboratory Accepted Manuscripts

We report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La3+ site by Ca2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La1−xCax)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x≤0.01. Magnetic susceptibility of the parent and the x=0.002(xnom=0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of both the tetragonal ...


Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski 2018 Washington University in St. Louis

Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski

Engineering and Applied Science Theses & Dissertations

Few experimental methods today are capable of exploring the strength of materials at high strain rates (105 s-1). Those that are capable, such as the Split Hopkinson Bar, Taylor Anvil and Plate Impact suffer from instability and are generally limited to one dimensional wave propagation. Of particular interest is material response under biaxial compression, similar to that seen in inertial confinement fusion. Laser fusion fuel pellets typically undergo large strain rates as well as plastic deformation and non-linear behavior. This work briefly outlines an experimental procedure designed to replicate these large strain rates under biaxial compression using spherical ...


Characterization Of Magnetic Thin Films Using The Magneto Optic Kerr Effect, Nicholas J. Savino 2018 Lynchburg College

Characterization Of Magnetic Thin Films Using The Magneto Optic Kerr Effect, Nicholas J. Savino

Student Scholar Showcase

Understanding magnetic properties of materials allows for advances in applications such as data storage. The Magneto-Optic Kerr Effect (MOKE) displays the reflective response a magnetic material has to a magnetic field. When polarized light reflects off of a magnetic material, the polarization orientation can change. The application of an external magnetic field can affect how much this polarization changes in a non-linear manner. Hysteresis loops are created when examining the relationship between intensity of the reflected light to the applied magnetic field provide information about magnetic properties of that material, such as the coercive field and field retention. Preliminary measurements ...


Hedgehog Spin-Vortex Crystal Stabilized In A Hole-Doped Iron-Based Superconductor, William R. Meier, Qing-Ping Ding, Andreas Kreyssig, Sergey Bud’ko, Aashish Sapkota, Karunakar Kothapalli, Vladislav Borisov, Roser Valentí, Cristian D. Batista, Peter Orth, Rafael M. Fernandes, Alan I. Goldman, Yuji Furukawa, Anna E. Böhmer, Paul C. Canfield 2018 Iowa State University and Ames Laboratory

Hedgehog Spin-Vortex Crystal Stabilized In A Hole-Doped Iron-Based Superconductor, William R. Meier, Qing-Ping Ding, Andreas Kreyssig, Sergey Bud’Ko, Aashish Sapkota, Karunakar Kothapalli, Vladislav Borisov, Roser Valentí, Cristian D. Batista, Peter Orth, Rafael M. Fernandes, Alan I. Goldman, Yuji Furukawa, Anna E. Böhmer, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and ...


An Open-Source Quadrature-Based Population Balance Solver For Openfoam, Alberto Passalacqua, Frédérique Laurent, Ehsan Madadi-Kandjani, Jeffrey C. Heylmun, Rodney O. Fox 2018 Iowa State University

An Open-Source Quadrature-Based Population Balance Solver For Openfoam, Alberto Passalacqua, Frédérique Laurent, Ehsan Madadi-Kandjani, Jeffrey C. Heylmun, Rodney O. Fox

Chemical and Biological Engineering Publications

The extended quadrature method of moments (EQMOM) for the solution of population balance equations (PBE) is implemented in the open-source computational fluid dynamic (CFD) toolbox OpenFOAM as part of the OpenQBMM project. The moment inversion procedure was designed (Nguyen et al., 2016) to maximize the number of conserved moments in the transported moment set. The algorithm is implemented in a general structure to allow the addition of other kernel density functions defined on R+, and arbitrary kernels to describe physical phenomena involved in the evolution of the number density function. The implementation is verified with a set of zero-dimensional cases ...


Nucleation Of Stoichiometric Compounds From Liquid: Role Of The Kinetic Factor, Huajing Song, Yang Sun, Feng Zhang, Cai-Zhuang Wang, Kai-Ming Ho, Mikhail I. Mendelev 2018 Ames Laboratory

Nucleation Of Stoichiometric Compounds From Liquid: Role Of The Kinetic Factor, Huajing Song, Yang Sun, Feng Zhang, Cai-Zhuang Wang, Kai-Ming Ho, Mikhail I. Mendelev

Ames Laboratory Accepted Manuscripts

The nucleation rate depends on the free-energy barrier and the kinetic factor. While the role of the free energy barrier is a text-book subject, the importance of the kinetic factor is frequently underestimated. In this study, we applied the mean first-passage time method, to obtain the free-energy landscape and kinetic factor directly from the molecular dynamics (MD) simulations of the nucleation of the face-centered cubic (fcc) phase in the pure Ni and the B2 phases in the N i 50 A l 50 and C u 50 Z r 50 alloys. The obtained data show that while the free-energy barrier ...


Two Notes On A Piano, Samuel Thomas 2018 The University of Akron

Two Notes On A Piano, Samuel Thomas

Honors Research Projects

In an increasingly digital world, the analog tends to be neglected in exchange for the convenience and precision of digital devices. However, many analog systems exhibit physical phenomena that can be difficult to reproduce digitally. The purpose of this project is to explore the piano and parts of its sonic character that are not currently accounted for in digital systems. Specifically, when multiple notes are being propagated on a soundboard, they affect each other’s tone because each one changes the state of the soundboard. The effect is evident in the partials of each note: the partials (not quite harmonics ...


Magnetic Anisotropy And Exchange Bias In L10 Fept/Nio Bilayer Thin Films, Zachary B. Leuty 2018 Missouri State University

Magnetic Anisotropy And Exchange Bias In L10 Fept/Nio Bilayer Thin Films, Zachary B. Leuty

MSU Graduate Theses

Perpendicular exchange bias (PEB), particularly when it persists in nanomaterials to room temperature, is highly useful for applications in spintronic devices and for advancing the development of high-information-density magnetic random access memory. A complete mechanistic and theoretical understanding of exchange bias has evaded scientists. The quest to discover novel materials for magnetic and spintronic device applications has stimulated investigation into nanomaterials having optimal and/or tailored magnetic properties that are based on the exchange bias effect. In this study, pulsed laser deposition was used to grow epitaxial PEB systems of ferromagnetic FePt thin film layers that are interfaced with antiferromagnetic ...


Novel Mechanisms For Solid-State Processing And Grain Growth With Microstructure Alignment In Alnico-8 Based Permanent Magnets, Aaron G. Kassen, Emma M. H. White, Liangfa Hu, Wei Tang, Lin Zhou, Matthew J. Kramer, Iver E. Anderson 2018 Iowa State University and Ames Laboratory

Novel Mechanisms For Solid-State Processing And Grain Growth With Microstructure Alignment In Alnico-8 Based Permanent Magnets, Aaron G. Kassen, Emma M. H. White, Liangfa Hu, Wei Tang, Lin Zhou, Matthew J. Kramer, Iver E. Anderson

Ames Laboratory Accepted Manuscripts

An estimated 750,000 new hybrid electric and plug-in battery vehicles, most with permanent magnet synchronous alternating current (PMAC) drive motors, took to the road in 2016 alone. Accompanied by 40% year over year growth in the EV market significant challenges exist in producing large quantities of permanent magnets (on the order of tens of millions) for reliable, low-cost traction motors [IE Agency, Energy Technology Perspectives (2017)]. Since the rare earth permanent magnet (REPM) market is essentially 100% net import reliant in the United States and has proven to have an unstable cost and supply structure in recent years, a ...


Real Time Spectroscopic Ellipsometry Analysis Of First Stage Cuin1-Xgaxse2 Growth: Indium-Gallium Selenide Co-Evaporation, Puja Pradhan, Puruswottam Aryal, Dinesh Attygalle, Abdel-Rahman Ibdah, Prakash Koirala, Jian Li, Khagendra P. Bhandari, Geethika K. Liyanage, Randy J. Ellingson, Michael J. Heben, Sylvain Marsillac, Robert W. Collins, Nikolas J. Podraza 2018 Old Dominion University

Real Time Spectroscopic Ellipsometry Analysis Of First Stage Cuin1-Xgaxse2 Growth: Indium-Gallium Selenide Co-Evaporation, Puja Pradhan, Puruswottam Aryal, Dinesh Attygalle, Abdel-Rahman Ibdah, Prakash Koirala, Jian Li, Khagendra P. Bhandari, Geethika K. Liyanage, Randy J. Ellingson, Michael J. Heben, Sylvain Marsillac, Robert W. Collins, Nikolas J. Podraza

Electrical & Computer Engineering Faculty Publications

Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1-xGax)₂Se₃ (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to ...


Effects Of Grain Boundary Disorder On Yield Strength, Valery Borovikov, Mikhail I. Mendelev, Alexander H. King 2018 Iowa State University and Ames Laboratory

Effects Of Grain Boundary Disorder On Yield Strength, Valery Borovikov, Mikhail I. Mendelev, Alexander H. King

Materials Science and Engineering Publications

It was recently reported that segregation of Zr to grain boundaries (GB) in nanocrystalline Cu can lead to the formation of disordered intergranular films [1,2]. In this study we employ atomistic computer simulations to study how the formation of these films affects the dislocation nucleation from the GBs. We found that full disorder of the grain boundary structure leads to the suppression of dislocation emission and significant increase of the yield stress. Depending on the solute concentration and heat-treatment, however, a partial disorder may also occur and this aids dislocation nucleation rather than suppressing it, resulting in elimination of ...


Call For Abstracts - Resrb 2018, June 18-20, Brussels, Belgium, Wojciech M. Budzianowski 2017 Wojciech Budzianowski Consulting Services

Call For Abstracts - Resrb 2018, June 18-20, Brussels, Belgium, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin 2017 University of Louisville

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis ...


Continuing Improvements Of The Sharkduino Animal Tag System, William Laney 2017 College of William and Mary

Continuing Improvements Of The Sharkduino Animal Tag System, William Laney

Undergraduate Honors Theses

Much about the movement and habits of marine animals is still unknown. This information can be found for terrestrial animals through direct observation or video surveillance; however, these optical methods are not effective in aquatic environments. To circumvent this problem, researchers “tag” aquatic animals with small sensor systems that record data about the animals movements. The researchers then recover the tag and use signal analysis to draw conclusions about the habits of the animal. Unfortunately, commercially available tags are expensive and most can only be used once. We created an inexpensive and reusable tag to be used on sandbar sharks ...


Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett 2017 California Polytechnic State University, San Luis Obispo

Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett

Mechanical Engineering

This paper describes the design process from ideation to test validation for a singular robotic joint to be configured into a myriad of system level of robots.


Coexistence Of Type-Ii Dirac Point And Weak Topological Phase In Pt 3 Sn, Minsung Kim, Cai-Zhuang Wang, Kai-Ming Ho 2017 Ames Laboratory

Coexistence Of Type-Ii Dirac Point And Weak Topological Phase In Pt 3 Sn, Minsung Kim, Cai-Zhuang Wang, Kai-Ming Ho

Ames Laboratory Accepted Manuscripts

Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representations of ...


Subsurface Bending And Reorientation Of Tilted Vortex Lattices In Bulk Isotropic Superconductors Due To Coulomb-Like Repulsion At The Surface, E. Herrera, I. Guillamon, J. A. Galvis, A. Correa, A. Fente, S. Vieira, H. Suderow, A. Yu. Martynovich, Vladimir G. Kogan 2017 Universidad Autónoma de Madrid

Subsurface Bending And Reorientation Of Tilted Vortex Lattices In Bulk Isotropic Superconductors Due To Coulomb-Like Repulsion At The Surface, E. Herrera, I. Guillamon, J. A. Galvis, A. Correa, A. Fente, S. Vieira, H. Suderow, A. Yu. Martynovich, Vladimir G. Kogan

Ames Laboratory Accepted Manuscripts

We study vortex lattices (VLs) in superconducting weak-pinning platelet-like single crystals of β−Bi2Pdin tilted magnetic fields with a scanning tunneling microscope. We show that vortices exit the sample perpendicular to the surface and are thus bent beneath the surface. The structure and orientation of the tilted VLs in the bulk are, for large tilt angles, strongly affected by Coulomb-type intervortex repulsion at the surface due to stray magnetic fields.


Digital Commons powered by bepress