Open Access. Powered by Scholars. Published by Universities.®

Fluid Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

708 Full-Text Articles 1,092 Authors 189,398 Downloads 76 Institutions

All Articles in Fluid Dynamics

Faceted Search

708 full-text articles. Page 1 of 27.

Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz 2021 The University of Western Ontario

Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz

Electronic Thesis and Dissertation Repository

When a laminar inclined circular jet impinges on a horizontal surface, it forms a non-circular hydraulic jump governed by a non-axisymmetric flow. In this thesis, we use the boundary-layer and thin-film approaches in the three dimensions to theoretically analyse such flow and the hydraulic jumps produced in such cases. We particularly explore the interplay among inertia, gravity, and the effective inclination angle on the non-axisymmetric flow.

The boundary-layer height is found to show an azimuthal dependence at strong gravity level only; however, the thin film thickness as well as the hydraulic jump profile showed a strong non-axisymmetric behaviour at all ...


Numerical Modelling Of A Novel 3d T-Junction Microfluidic Droplet Generator, Andrew G.H. Roberts 2021 Western University

Numerical Modelling Of A Novel 3d T-Junction Microfluidic Droplet Generator, Andrew G.H. Roberts

Undergraduate Student Research Internships Conference

No abstract provided.


Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman 2021 California Polytechnic State University, San Luis Obispo

Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman

Master's Theses

Thermals are regions of rising hot air formed on the ground through the warming of the surface by the sun. Thermals are commonly used by birds and glider pilots to extend flight duration, increase cross-country distance, and conserve energy. This kind of powerless flight using natural sources of lift is called soaring. Once a thermal is encountered, the pilot flies in circles to keep within the thermal, so gaining altitude before flying off to the next thermal and towards the destination. A single thermal can net a pilot thousands of feet of elevation gain, however estimating thermal locations is not ...


Global Mhd And Acoustic Solar Modeling And Helioseismic Analysis, Andrey M. Stejko 2021 New Jersey Institute of Technology

Global Mhd And Acoustic Solar Modeling And Helioseismic Analysis, Andrey M. Stejko

Dissertations

Computational fluid dynamic simulations have become one of the most prolific avenues of study in the fields of solar and stellar physics within the last several decades. With the advent of ever increasing computing power, high-definition global models of the Sun have become indispensable in understanding the complex and chaotic nature of flows in the solar interior, as well as their impact on the evolution of the global solar dynamo. The mechanisms that connect the generation of the toroidal magnetic field at the base of the convection zone to the emergence of a poloidal field onto the solar surface can ...


Hydrodynamic Impacts Of Expanding Aquaculture, Zhilong Liu 2021 University of Maine

Hydrodynamic Impacts Of Expanding Aquaculture, Zhilong Liu

Electronic Theses and Dissertations

Climate change may potentially change aquatic systems and bring certain risks for aquaculture development. Understanding interactions between aquaculture and the environment helps to ensure aquaculture expansion is sustainable in the future. It is critical to determine how farms influence tidal flow patterns, turbulence, mixing and material transport in estuaries. This research aims to determine the flow response of an oyster farm, predict how expanding farms and farm placement will alter estuarine dynamics, and understand how the design of a farm influences material transport.

The hydrodynamic response of a floating oyster aquaculture farm in a low inflow estuary (the Damariscotta River ...


Characterization Of Landslide Processes From Radar Remote Sensing And Hydromechanical Modeling, Yuankun Xu 2021 Southern Methodist University

Characterization Of Landslide Processes From Radar Remote Sensing And Hydromechanical Modeling, Yuankun Xu

Earth Sciences Theses and Dissertations

Landsides are a natural geomorphic process yet a dangerous hazard which annually causes thousands of casualties and billions of property loss in a global scale. Understanding landslide motion kinematics from early initiation to final deposition is critical for monitoring, assessing, and forecasting landslide movement in order to mitigate their hazards. Landslides occur under diverse environmental settings and appear in variable types; however, all types of landslides can be mechanically attributed to shearing failure at the basal surface due to stress regime shift contributed by internal and/or external forcing. Typical internal factors include soil/rock weathering, whereas typical external triggering ...


Virtual Prototyping Of Liquid Lithium Divertor Concepts, Brennan Arnold 2021 Macalester College

Virtual Prototyping Of Liquid Lithium Divertor Concepts, Brennan Arnold

Macalester Journal of Physics and Astronomy

A tokamak divertor must withstand power deposition in excess of 10 MW/m^2 in steady state and much higher in disruptions, enough to destroy nearly any material. In order to handle this extreme heat, there is some interest in using liquid metal flows to continually renew the divertor surface. In this paper, we examine an idea for a divertor with a porous surface that allows liquid lithium flowing through the divertor to percolate to the plasma facing surface. This idea is complicated by magnetohydrodynamic drag, where the stong magnetic fields in the tokamak cause the lithium to flow too ...


Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins 2021 University of Arkansas, Fayetteville

Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins

Mechanical Engineering Undergraduate Honors Theses

According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive ...


Superfluid Swimmers, German Kolmakov, Igor S. Aranson 2021 CUNY New York City College of Technology

Superfluid Swimmers, German Kolmakov, Igor S. Aranson

Publications and Research

The propulsion of living microorganisms ultimately relies on viscous drag for body-fluid interactions. The self-locomotion in superfluids such as 4He is deemed impossible due to the apparent lack of viscous resistance. Here, we investigate the self-propulsion of a Janus (two-face) light-absorbing particle suspended in superfluid helium 4He (He-II). The particle is energized by the heat flux due to the absorption of light from an external source. We show that a quantum mechanical propulsion force originates due to the transformation of the superfluid to a normal fluid on the heated particle face. The theoretical analysis is supported by the ...


Cfd Simulations Of Stirred-Tank Reactors For Gas-Liquid And Gas-Liquid-Solid Systems Using Openfoam®, Xiaofei Hu, Aziz Dogan Ilgun, Alberto Passalacqua, Rodney O. Fox, Francesco Bertola, Miran Milosevic, Frans Visscher 2021 Iowa State University

Cfd Simulations Of Stirred-Tank Reactors For Gas-Liquid And Gas-Liquid-Solid Systems Using Openfoam®, Xiaofei Hu, Aziz Dogan Ilgun, Alberto Passalacqua, Rodney O. Fox, Francesco Bertola, Miran Milosevic, Frans Visscher

Chemical and Biological Engineering Publications

An open-source CFD software OpenFOAM® is used to simulate two multiphase stirred-tank reactors relevant to industrial processes such as slurry polymerization and fuel production. Gas-liquid simulations are first performed in a single-impeller stirred-tank reactor, studied experimentally by Ford, J. J., T. J. Heindel, T. C. Jensen, and J. B. Drake. 2008. “X-Ray Computed Tomography of a Gas-Sparged Stirred-Tank Reactor.” Chemical Engineering Science 63: 2075–85. Three impeller rotation speeds (200, 350 and 700 rpm) with three different bubble diameters (0.5, 1.5 and 2.5 mm) are investigated. Flow patterns compared qualitatively to those from experiments. Compared to the ...


Euler, Father Of Haemodynamics, Sylvio R. Bistafa 2021 University of Sao Paulo

Euler, Father Of Haemodynamics, Sylvio R. Bistafa

Euleriana

This article is being published in conjunction with the translation and synopsis of E855. Principia pro motu sanguinis per arterias determinando of 1775 - view the translation and synopsis by clicking here.


Frozen In Time: A Numerical Modeling Approach To The Study Of Ice Bearing Planetesimals Through Carbonaceous Chondrites, Jasmine M. Bayron 2021 The Graduate Center, City University of New York

Frozen In Time: A Numerical Modeling Approach To The Study Of Ice Bearing Planetesimals Through Carbonaceous Chondrites, Jasmine M. Bayron

Dissertations, Theses, and Capstone Projects

Icy planetesimals are significant objects of study for meteoritics, planetary science, and astrobiology due to their connections to the origins of life and liquid water on Earth. An existing closed system aqueous alteration model was adapted to simulate several scenarios involving early Solar System geologic processes occurring in an icy planetesimal interior. The model described in this work has been developed not only to test the validity of constraints currently thought to apply to CM1 parent bodies, but to directly compare the implications of these constraints for the isotopic composition and the modal mineralogy of carbonaceous chondrites. Isotopic ratios of ...


Simulation Of Water Loading In Filter Medium, Anthony Mole 2021 The University of Akron

Simulation Of Water Loading In Filter Medium, Anthony Mole

Williams Honors College, Honors Research Projects

This research will model fluid flow through a filter plugged with water droplets using FlexPDE software. After simulations are run at various initial conditions, curves will be developed to correlate the permeability of the filter to variables like water droplet distribution and size.


The Effects Of Increasing Positively Charged Metal Ions Within Synovial Fluid, Kandisi Anyabwile 2021 The University of Akron

The Effects Of Increasing Positively Charged Metal Ions Within Synovial Fluid, Kandisi Anyabwile

Williams Honors College, Honors Research Projects

Osteoarthritis is a degenerative joint disease that affects 10% of men and 13% of women over age of 60. It is the degradation of the cartilage between two bones; obesity, age, overuse, or injury are major contributors to the development of this disease. The joint is incapsulated by the synovial sac filled with a viscous solution that aids in lubrication referred to as synovial fluid. If the synovial sac is ruptured due to injury, positive ions (K+, Na+, Ca2+, and Fe3+) may affect viscoelastic properties within the sac. The purpose of this study was to understand how positive ...


On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez 2021 CUNY City College

On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez

Dissertations and Theses

As large urban centers around the world become more densely populated, the global conversion from natural to man-made land surfaces will only increase. These land-use changes affect the urban surface energy budget which in turn changes the structure of the planetary boundary layer (PBL) above. With current high-performance computing systems, meteorological and built environment information can be better utilized to quantify the anthropogenic effects of these modifications. Although these systems have improved forecasting near-surface weather conditions, a comprehensive approach to represent urban impacts on the PBL is still limited. Improved PBL representation can lead to better weather and climate forecasts ...


Improving The Temporal Accuracy Of Turbulence Models And Resolving The Implementation Issues Of Fluid Flow Modeling, Kyle J. Schwiebert 2021 Michigan Technological University

Improving The Temporal Accuracy Of Turbulence Models And Resolving The Implementation Issues Of Fluid Flow Modeling, Kyle J. Schwiebert

Dissertations, Master's Theses and Master's Reports

A sizeable proportion of the work in this thesis focuses on a new turbulence model, dubbed ADC (the approximate deconvolution model with defect correction). The ADC is improved upon using spectral deferred correction, a means of constructing a higher order ODE solver. Since both the ADC and SDC are based on a predictor-corrector approach, SDC is incorporated with essentially no additional computational cost. We will show theoretically and using numerical tests that the new scheme is indeed higher order in time than the original, and that the benefits of defect correction, on which the ADC is based, are preserved.

The ...


Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar 2021 Michigan Technological University

Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar

Dissertations, Master's Theses and Master's Reports

The objective of this work is to identify the fundamental mechanism of dropwise condensation on a smooth solid surface by probing the solid-vapor interface during phase-change to evaluate the existence and structure of the thin film and the initial nucleus that develop during condensation. In this work, an automated Surface Plasmon Resonance imaging (SPRi) instrument with the ability to perform imaging in intensity modulation and angular modulation is developed. The SPRi instrument is used to probe (in three dimensions) the adsorbed film that forms on the substrate during dropwise condensation. SPRi with a lateral resolution of ~ 4-10 μm, thickness resolution ...


Electroosmotic Mixing Of Non-Newtonian Fluid In A Microchannel With Obstacles And Zeta Potential Heterogeneity, Lanju Mei, Defu Cui, Jiayue Shen, Diganta Dutta, Willie Brown, Lei Zhang, Ibibia K. Dabipi 2021 Old Dominion University

Electroosmotic Mixing Of Non-Newtonian Fluid In A Microchannel With Obstacles And Zeta Potential Heterogeneity, Lanju Mei, Defu Cui, Jiayue Shen, Diganta Dutta, Willie Brown, Lei Zhang, Ibibia K. Dabipi

Computational Modeling & Simulation Engineering Faculty Publications

This paper investigates the electroosmotic micromixing of non-Newtonian fluid in a microchannel with wall-mounted obstacles and surface potential heterogeneity on the obstacle surface. In the numerical simulation, the full model consisting of the Navier–Stokes equations and the Poisson–Nernst–Plank equations are solved for the electroosmotic fluid field, ion transport, and electric field, and the power law model is used to characterize the rheological behavior of the aqueous solution. The mixing performance is investigated under different parameters, such as electric double layer thickness, flow behavior index, obstacle surface zeta potential, obstacle dimension. Due to the zeta potential heterogeneity at ...


Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu 2021 Old Dominion University

Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical ...


Numerical Simulations Of Capsule Deformation Using A Dual Time-Stepping Lattice Boltzmann Method, Charles Armstrong, Yan Peng 2021 Old Dominion University

Numerical Simulations Of Capsule Deformation Using A Dual Time-Stepping Lattice Boltzmann Method, Charles Armstrong, Yan Peng

Mathematics & Statistics Faculty Publications

In this work a quasisteady, dual time-stepping lattice Boltzmann method is proposed for simulation of capsule deformation. At each time step the steady-state lattice Boltzmann equation is solved using the full approximation storage multigrid scheme for nonlinear equations. The capsule membrane is modeled as an infinitely thin shell suspended in an ambient fluid domain with the fluid structure interaction computed using the immersed boundary method. A finite element method is used to compute the elastic forces exerted by the capsule membrane. Results for a wide range of parameters and initial configurations are presented. The proposed method is found to reduce ...


Digital Commons powered by bepress