Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

909 Full-Text Articles 1,388 Authors 131,515 Downloads 96 Institutions

All Articles in Quantum Physics

Faceted Search

909 full-text articles. Page 1 of 33.

Laser Cooling With Adiabatic Transfer On A Raman Transition, Graham Greve, Baochen Wu, James K. Thompson 2019 JILA/CU-Boulder

Laser Cooling With Adiabatic Transfer On A Raman Transition, Graham Greve, Baochen Wu, James K. Thompson

JILA Faculty Contributions

Sawtooth Wave Adiabatic Passage (SWAP) laser cooling was recently demonstrated using a narrow-linewidth single-photon optical transition in atomic strontium and may prove useful for cooling other atoms and molecules. However, many atoms and molecules lack the appropriate narrow optical transition. Here we use such an atom, 87Rb, to demonstrate that two-photon Raman transitions with arbitrarily-tunable linewidths can be used to achieve 1D SWAP cooling without significantly populating the intermediate excited state. Unlike SWAP cooling on a narrow transition, Raman SWAP cooling allows for a final 1D temperature well below the Doppler cooling limit (here, 25 times lower); and the ...


Quadratic To Linear Magnetoresistance Tuning In Tmb4, Sreemanta Mitra, Jeremy Goh Swee Kang, John Shin, Jin Quan Ng, Sai Swaroop Sunku, Tai Kong, Paul C. Canfield, B. Sriram Shastry, Pinaki Sengupta, Christos Panagopoulos 2019 Nanyang Technological University

Quadratic To Linear Magnetoresistance Tuning In Tmb4, Sreemanta Mitra, Jeremy Goh Swee Kang, John Shin, Jin Quan Ng, Sai Swaroop Sunku, Tai Kong, Paul C. Canfield, B. Sriram Shastry, Pinaki Sengupta, Christos Panagopoulos

Paul C. Canfield

The change of a material's electrical resistance (R) in response to an external magnetic field (B) provides subtle information for the characterization of its electronic properties and has found applications in sensor and storage related technologies. In good metals, Boltzmann's theory predicts a quadratic growth in magnetoresistance (MR) at low B and saturation at high fields. On the other hand, a number of nonmagnetic materials with weak electronic correlation and low carrier concentration for metallicity, such as inhomogeneous conductors, semimetals, narrow gap semiconductors and topological insulators, and two dimensional electron gas, show positive, nonsaturating linear magnetoresistance (LMR). However ...


Chiral Cherenkov And Chiral Transition Radiation In Anisotropic Matter, Kirill Tuchin 2019 Iowa State University

Chiral Cherenkov And Chiral Transition Radiation In Anisotropic Matter, Kirill Tuchin

Kirill Tuchin

A significant contribution to the electromagnetic radiation by a fast electric charge moving in anisotropic chiral matter arises from spontaneous photon radiation due to the chiral anomaly. While such a process, also known as the “vacuum Cherenkov radiation,” is forbidden in the QED vacuum, it can occur in chiral matter, where it is more appropriate to call it the “chiral Cherenkov radiation.” Its contribution to the radiation spectrum is of order α2 compared to α3 of the bremsstrahlung. I derive the frequency spectrum and the angular distribution of this radiation in the high energy limit. The quantum effects ...


Pairwise Completely Positive Matrices And Conjugate Local Diagonal Unitary Invariant Quantum States, Nathaniel Johnston, Olivia MacLean 2019 Mount Allison University

Pairwise Completely Positive Matrices And Conjugate Local Diagonal Unitary Invariant Quantum States, Nathaniel Johnston, Olivia Maclean

Electronic Journal of Linear Algebra

A generalization of the set of completely positive matrices called pairwise completely positive (PCP) matrices is introduced. These are pairs of matrices that share a joint decomposition so that one of them is necessarily positive semidefinite while the other one is necessarily entrywise non-negative. Basic properties of these matrix pairs are explored and several testable necessary and sufficient conditions are developed to help determine whether or not a pair is PCP. A connection with quantum entanglement is established by showing that determining whether or not a pair of matrices is pairwise completely positive is equivalent to determining whether or not ...


Phantoms In Science: Nietzsche's Nonobjectivity On Planck's Quanta, Donald Richard Dickerson III 2019 Bellarmine University

Phantoms In Science: Nietzsche's Nonobjectivity On Planck's Quanta, Donald Richard Dickerson Iii

Undergraduate Theses

What does Maxwell Planck's concept of phantomness suggest about the epistemological basis of science and how might a Nietzschean critique reveal solution to the weaknesses revealed? With his solution to Kirchoff's equation, Maxwell Planck launched the paradigm of quantum physics. This same solution undermined much of current understandings of science versus pseudoscience. Using Nietzsche's perspectivism and other philosophical critiques, Planck's answer to blackbody radiation is used to highlight the troubles with phantom problems in science and how to try to direct science towards a more holistic and complete scientific approach.


Exploring Quantum Dynamics And Thermodynamics In Superconducting Qubits, Mahdi Naghiloo 2019 Washington University in St. Louis

Exploring Quantum Dynamics And Thermodynamics In Superconducting Qubits, Mahdi Naghiloo

Arts & Sciences Electronic Theses and Dissertations

Quantum technology has been rapidly growing due to its potential revolutionary applications. In particular, superconducting qubits provide a strong light-matter interaction as required for quantum computation and in principle can be scaled up to a high level of complexity. However, obtaining the full benet of quantum mechanics in superconducting circuits requires a deep understanding of quantum physics in such systems in all aspects. One of the most crucial aspects is the concept of measurement and the dynamics of the quantum systems under the measurement process. This thesis is intended to be a pedagogical introduction to the concept of quantum measurement ...


Experimental Evidence Supportive Of The Quantum Dna Model, F. Matthew Mihelic 2019 University of Tennessee Health Science Center

Experimental Evidence Supportive Of The Quantum Dna Model, F. Matthew Mihelic

Faculty Publications

The DNA molecule can be modeled as a quantum logic processor in which electron spin qubits are held coherently in each nucleotide in a logically and thermodynamically reversible enantiomeric symmetry, and can be coherently conducted along the pi-stacking interactions of aromatic nucleotide bases, while simultaneously being spin-filtered via the helicity of the DNA molecule. Entangled electron pairs can be separated by that spin-filtering, held coherently at biological temperatures in the topologically insulated nucleotide quantum gates, and incorporated into separate DNA strands during DNA replication. Two separate DNA strands that share quantum entangled electrons can be mitotically divided into individual cells ...


Unbounded Derivations Of C*-Algebras And The Heisenberg Commutation Relation, Lara M. Ismert 2019 University of Nebraska-Lincoln

Unbounded Derivations Of C*-Algebras And The Heisenberg Commutation Relation, Lara M. Ismert

Dissertations, Theses, and Student Research Papers in Mathematics

This dissertation investigates the properties of unbounded derivations on C*-algebras, namely the density of their analytic vectors and a property we refer to as "kernel stabilization." We focus on a weakly-defined derivation δD which formalizes commutators involving unbounded self-adjoint operators on a Hilbert space. These commutators naturally arise in quantum mechanics, as we briefly describe in the introduction.

A first application of kernel stabilization for δD shows that a large class of abstract derivations on unbounded C*-algebras, defined by O. Bratteli and D. Robinson, also have kernel stabilization. A second application of kernel stabilization provides a ...


Implementing A Self-Corrected Chemical Potential Scheme In Determinant Quantum Monte Carlo Simulations, Kevin Gordon Kleiner 2019 University of Tennessee, Knoxville

Implementing A Self-Corrected Chemical Potential Scheme In Determinant Quantum Monte Carlo Simulations, Kevin Gordon Kleiner

Chancellor’s Honors Program Projects

No abstract provided.


A Qubit Algorithm For Simulating The Nonlinear Schroedinger Equation, Connor Simpson 2019 William & Mary

A Qubit Algorithm For Simulating The Nonlinear Schroedinger Equation, Connor Simpson

Undergraduate Honors Theses

Recent work in mathematical physics and nonlinear optics has shown that Hamiltonians that are non-Hermitian but still symmetric under parity and time reversal can describe eigenstates of a system with real eigenvalues. Other research has also showed that the nonlinear Schrodinger equation can be generalized to describe PT-symmetric systems, which generates novel solutions not described by its Hermitian equivalent. The Hermitian form of the nonlinear Schroedinger equation can also be extended to describe a particular case of the general PT-symmetric NLS, suggesting a connection between the two. I attempted to generate a unitary operator that will be useful for unitary ...


Free Electron Sources And Diffraction In Time, Eric R. Jones 2019 University of Nebraska-Lincoln

Free Electron Sources And Diffraction In Time, Eric R. Jones

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The quantum revolution of the last century advanced synergistically with technology, for example, with control of the temporal and spatial coherence, and the polarization state of light. Indeed, experimental confirmation of the quirks of quantum theory, as originally highlighted by Einstein, Podolsky, and Rosen, through Bohm, and then Bell, have been performed with photons, i.e., electromagnetic wave packets prepared in the same quantum states. Experimental tests of quantum mechanics with matter wave packets have been limited due to challenges in preparing all of the packets with similar quantum states. While great strides have been made for trapped atoms and ...


The Nature Of The Heisenberg-Von Neumann Cut: Enhanced Orthodox Interpretation Of Quantum Mechanics, Ashok Narasimhan, Deepak Chopra, Menas Kafatos 2019 California Institute for Integral Studies

The Nature Of The Heisenberg-Von Neumann Cut: Enhanced Orthodox Interpretation Of Quantum Mechanics, Ashok Narasimhan, Deepak Chopra, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

We examine the issue of the Heisenberg-von Neumann cut in light of recent interpretations of quantum eraser experiments which indicate the possibility of a universal Observer outside space-time at an information level of existence. The delayed-choice aspects of observation, measurement, the role of the observer, and information in the quantum framework of the universe are discussed. While traditional double-slit experiments are usually interpreted as indicating that the collapse of the wave function involves choices by an individual observer in space-time, the extension to quantum eraser experiments brings in some additional subtle aspects relating to the role of observation and what ...


Roadmap On Superoscillations, Michael Berry, Nicolay Zheludev, Yakir Aharonov, Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa, Jeff Tollaksen, Edward T. F. Rogers, Fei Qin, Minghui Hong, Xiangang Luo, Roei Remez, Ady Arie, Jörg B. Götte, Mark R. Dennis, Alex M. H. Wong, George V. Eleftheriades, Yaniv Eliezer, Alon Bahabad, Gang Chen, Zhongquan Wen, Gaofeng Liang, Chenglong Hao, C-W Qiu, Achim Kempf, Eytan Katzav, Moshe Schwartz 2019 University of Bristol

Roadmap On Superoscillations, Michael Berry, Nicolay Zheludev, Yakir Aharonov, Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa, Jeff Tollaksen, Edward T. F. Rogers, Fei Qin, Minghui Hong, Xiangang Luo, Roei Remez, Ady Arie, Jörg B. Götte, Mark R. Dennis, Alex M. H. Wong, George V. Eleftheriades, Yaniv Eliezer, Alon Bahabad, Gang Chen, Zhongquan Wen, Gaofeng Liang, Chenglong Hao, C-W Qiu, Achim Kempf, Eytan Katzav, Moshe Schwartz

Mathematics, Physics, and Computer Science Faculty Articles and Research

Superoscillations are band-limited functions with the counterintuitive property that they can vary arbitrarily faster than their fastest Fourier component, over arbitrarily long intervals. Modern studies originated in quantum theory, but there were anticipations in radar and optics. The mathematical understanding—still being explored—recognises that functions are extremely small where they superoscillate; this has implications for information theory. Applications to optical vortices, sub-wavelength microscopy and related areas of nanoscience are now moving from the theoretical and the demonstrative to the practical. This Roadmap surveys all these areas, providing background, current research, and anticipating future developments.


Investigating The Talbot Effect In Arrays Of Optical Dipole Traps For Neutral Atom Quantum Computing, Sergio Aguayo 2019 California Polytechnic State University, San Luis Obispo

Investigating The Talbot Effect In Arrays Of Optical Dipole Traps For Neutral Atom Quantum Computing, Sergio Aguayo

Physics

Quantum computers are devices that are able to perform calculations not achievable for classical computers. Although there are many methods for creating a quantum computer, using neutral atoms offers the advantage of being stable when compared to other methods. The purpose of this investigation is to explore possible optical dipole trap configurations that would be useful for implementing a quantum computer with neutral atoms. Specifically, we computationally investigate arrays of pinholes, the diffraction pattern generated by them, and the onset of the Talbot effect in these traps. We manipulate the radius of the pinholes, the number of pinholes in the ...


Reducing Quantum Uncertainty Via Spatial Optimization, Austin T. Kalasky 2019 William & Mary

Reducing Quantum Uncertainty Via Spatial Optimization, Austin T. Kalasky

Undergraduate Honors Theses

High precision optical detection is fundamentally limited by quantum noise. This limit can be bypassed with the use of squeezed states of light with modified quantum noise. We study squeezed states of light with a focus on optimization of squeezing generated via polarization self-rotation (PSR) in hot rubidium vapor. The goal of our research is to reduce quantum noise by optimizing cell temperature and beam shape of the input pump field. We find that computerized spatial optimization algorithms (combined with manual optimization of temperature and laser detuning) are successful in improving squeezing levels, with one spatial mask yielding over 1 ...


Optimization Of Quantum Optical Metrology Systems, Nicholas Michael Studer 2019 Louisiana State University

Optimization Of Quantum Optical Metrology Systems, Nicholas Michael Studer

LSU Doctoral Dissertations

It can be said that all of humanity's efforts can be understood as a problem of optimization. We each have a natural sense of what is ``good'' or ``bad'' and thus our actions tend towards maximizing -- or optimizing -- some notion of good and minimizing those things we perceive as bad or undesirable.

Within the sciences, the greatest form of good is knowledge. It is this pursuit of knowledge that leads to not only life-saving innovations and technology, but also to furthering our understanding of our natural world and driving our philosophical pursuits.

The principle method of obtaining knowledge in ...


Precision Of Parameter Estimation In Quantum Metrology, Chenglong You 2019 Louisiana State University and Agricultural and Mechanical College

Precision Of Parameter Estimation In Quantum Metrology, Chenglong You

LSU Doctoral Dissertations

The fundamental precision limit of an interferometer is crucial since it bounds the best possible sensitivity one could achieve using such a device. This thesis will focus on several different interferometers and try to give the ultimate precision bounds by carefully counting all the resources used in the interferometers.

The thesis begins with the basics of the quantum state of light. The fundamentals of quantum metrology are also reviewed and discussed. More specifically, the terminology of classical and quantum Cram\'er-Rao bound and classical and quantum Fisher information are introduced.

Chapter 3 discusses the conclusive precision bounds in two-mode interferometer ...


Optimization Of An Injection Locked Laser System For Cold Neutral Atom Traps, Elliot M. Lehman 2019 California Polytechnic State University, San Luis Obispo

Optimization Of An Injection Locked Laser System For Cold Neutral Atom Traps, Elliot M. Lehman

Physics

Many types of quantum systems are being explored for use in quantum computers. One type of quantum system that shows promise for quantum computing is trapped neutral atoms. They have long coherence times, since they have multiple stable ground states and have minimal coupling with other atoms and their environment, and they can be trapped in arrays, making them individu- ally addressable. Once trapped, they can be initialized and operated on using laser pulses. This experiment utilizes a pinhole diffraction pattern, which can trap atoms in both bright and dark areas. To maximize trap strength, an injection-locked laser amplification system ...


Kondo Signatures Of A Quantum Magnetic Impurity In Topological Superconductors, Rui Wang, Wei-Yi Su, Jian-Xin Zhu, Chin-Sen Ting, Hai Li, Changfeng Chen, Baigeng Wang, Xiaoqun Wang 2019 Shanghai Jiao Tong University

Kondo Signatures Of A Quantum Magnetic Impurity In Topological Superconductors, Rui Wang, Wei-Yi Su, Jian-Xin Zhu, Chin-Sen Ting, Hai Li, Changfeng Chen, Baigeng Wang, Xiaoqun Wang

Physics & Astronomy Faculty Publications

We study the Kondo physics of a quantum magnetic impurity in two-dimensional topological superconductors (TSCs), either intrinsic or induced on the surface of a bulk topological insulator, using a numerical renormalization group technique. We show that, despite sharing the p+ip pairing symmetry, intrinsic and extrinsic TSCs host different physical processes that produce distinct Kondo signatures. Extrinsic TSCs harbor an unusual screening mechanism involving both electron and orbital degrees of freedom that produces rich and prominent Kondo phenomena, especially an intriguing pseudospin Kondo singlet state in the superconducting gap and a spatially anisotropic spin correlation. In sharp contrast, intrinsic TSCs ...


Ultrafast Manipulation Of Topologically Enhanced Surface Transport Driven By Mid-Infrared And Terahertz Pulses In Bi2se3, Liang Luo, Xu Yang, X. Liu, Zhiyan Liu, Chirag Vaswani, Di Cheng, M. Mootz, Xin Zhao, Yongxin Yao, Cai-Zhuang Wang, Kai-Ming Ho, I. E. Perakis, M. Dobrowolska, J. K. Furdyna, Jigang Wang 2019 Iowa State University and Ames Laboratory

Ultrafast Manipulation Of Topologically Enhanced Surface Transport Driven By Mid-Infrared And Terahertz Pulses In Bi2se3, Liang Luo, Xu Yang, X. Liu, Zhiyan Liu, Chirag Vaswani, Di Cheng, M. Mootz, Xin Zhao, Yongxin Yao, Cai-Zhuang Wang, Kai-Ming Ho, I. E. Perakis, M. Dobrowolska, J. K. Furdyna, Jigang Wang

Ames Laboratory Accepted Manuscripts

Topology-protected surface transport of ultimate thinness in three-dimensional topological insulators (TIs) is breaking new ground in quantum science and technology. Yet a challenge remains on how to disentangle and selectively control surface helical spin transport from the bulk contribution. Here we use the mid-infrared and terahertz (THz) photoexcitation of exclusive intraband transitions to enable ultrafast manipulation of surface THz conductivity in Bi2Se3. The unique, transient electronic state is characterized by frequency-dependent carrier relaxations that directly distinguish the faster surface channel than the bulk with no complication from interband excitations or need for reduced bulk doping. We determine the topological enhancement ...


Digital Commons powered by bepress