Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

592 Full-Text Articles 1,315 Authors 45,978 Downloads 53 Institutions

All Articles in Plasma and Beam Physics

Faceted Search

592 full-text articles. Page 1 of 19.

Dynamical Electron Vortices In Attosecond Double Photoionization Of H2, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, L. B. Madsen, S. X. Hu, Anthony F. Starace 2018 University of Nebraska-Lincoln

Dynamical Electron Vortices In Attosecond Double Photoionization Of H2, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, L. B. Madsen, S. X. Hu, Anthony F. Starace

Anthony F. Starace Publications

We study electron momentum vortices in single-photon double ionization of H2 by time-delayed, counterrotating, elliptically polarized attosecond pulses propagating along either parallel or perpendicular to the molecular axis R. For kˆ | R, kinematical vortices occur similar to those found for He. For R, we find dynamical vortex structures originating from an ellipticity-dependent interplay of 1+u and 1+u continuum amplitudes. We propose a complete experiment to determine the magnitudes and relative phase of these amplitudes by varying pulse ellipticities and time delays.


9 - Gas Kinetic Model For Argon In A Commercial Plasma System, Zachary Barton 2018 Valdosta State University

9 - Gas Kinetic Model For Argon In A Commercial Plasma System, Zachary Barton

Georgia Undergraduate Research Conference (GURC)

Gas kinetic models can tell us a lot about how a plasma system operates on the atomic and/or molecular level. Here, we are using a commercial Boltzmann solver to determine the electron energy distribution functions associated with an argon plasma produced by a commercial plasma system. From the EEDF we can gain insight about the electron temperature and electric field inside the device.


Perturbative Representation Of Ultrashort Nonparaxial Elegant Laguerre-Gaussian Fields, Andrew Vikartofsky, Anthony F. Starace, Liang-Wen Pi 2018 University of Nebraska - Lincoln

Perturbative Representation Of Ultrashort Nonparaxial Elegant Laguerre-Gaussian Fields, Andrew Vikartofsky, Anthony F. Starace, Liang-Wen Pi

Anthony F. Starace Publications

An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-Gaussian (LG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This perturbative approach provides a numerically tractable model for the calculation of arbitrarily high radial and azimuthal LG modes in the nonparaxial regime, without requiring integral representations of the fields. A key feature of this perturbative model is its use of a Poisson-like frequency spectrum, which allows for the proper description of pulses of arbitrarily short duration. This model is thus appropriate for simulating laser-matter interactions, including those involving short laser pulses.


Application Of Spectral Solution And Neural Network Techniques In Plasma Modeling For Electric Propulsion, Joseph R. Whitman 2018 Air Force Institute of Technology

Application Of Spectral Solution And Neural Network Techniques In Plasma Modeling For Electric Propulsion, Joseph R. Whitman

Theses and Dissertations

A solver for Poisson's equation was developed using the Radix-2 FFT method first invented by Carl Friedrich Gauss. Its performance was characterized using simulated data and identical boundary conditions to those found in a Hall Effect Thruster. The characterization showed errors below machine-zero with noise-free data, and above 20% noise-to-signal strength, the error increased linearly with the noise. This solver can be implemented into AFRL's plasma simulator, the Thermophysics Universal Research Framework (TURF) and used to quickly and accurately compute the electric field based on charge distributions. The validity of a machine learning approach and data-based complex system ...


Incorporating Collisions And Resistance Into The Transition From Field Emission To The Space Charge Regime, Samuel D. Dynako, Adam M. Darr, Allen L. Garner 2018 Purdue University

Incorporating Collisions And Resistance Into The Transition From Field Emission To The Space Charge Regime, Samuel D. Dynako, Adam M. Darr, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advancements in microelectromechanical systems (MEMS) and microplasmas, particularly with respect to applications in combustion and biotechnology, motivate studies into microscale gas breakdown to enable safe system design and implementation. Breakdown at microscale deviates from that predicted by Paschen’s law due to field emission—the stripping of electrons from the cathode in the presence of strong surface field—and follows the Fowler-Nordheim (FN) law. As injected current increases at this length scale, electrons accumulate in the gap and FN electron emission becomes space charge limited, leading to the Child-Langmuir (CL) law at vacuum and the Mott-Gurney (MG) law at high ...


High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen 2018 Old Dominion University

High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen

Physics Faculty Publications

The Old Dominion University Compact Light Source (ODU CLS) design concept is presented-a compact Inverse Compton Light Source (ICLS) with flux and brilliance orders of magnitude beyond conventional laboratory-scale sources and greater than other compact ICLS designs. This concept utilizes the physics of inverse Compton scattering of an extremely low emittance electron beam by a laser pulse of rms length of approximately two-thirds of a picosecond (2/3 ps). The accelerator is composed of a superconducting radio frequency (SRF) reentrant gun followed by four double-spoke SRF cavities. After the linac are three quadrupole magnets to focus the electron beam to ...


Laser-Induced Recoverable Surface Patterning On Ni50ti50 Shape Memory Alloys, Saidjafarzoda Ilhom 2018 Western Kentucky University

Laser-Induced Recoverable Surface Patterning On Ni50ti50 Shape Memory Alloys, Saidjafarzoda Ilhom

Masters Theses & Specialist Projects

Shape memory alloys (SMAs) are a unique class of smart materials exhibiting extraordinary properties with a wide range of applications in engineering, biomedical, and aerospace technologies. In this study, an advanced, efficient, low-cost, and highly scalable laser-assisted imprinting method with low environmental impact to create thermally controllable surface patterns is reported. Two different imprinting methods were carried out mainly on Ni50Ti50 (at. %) SMAs by using a nanosecond pulsed Nd:YAG laser operating at 1064 nm wavelength and 10 Hz frequency. First, laser pulses at selected fluences were directly focused on the NiTi surface, which generated pressure pulses of up to ...


Control Of Harmonic Generation By The Time Delay Between Two-Color, Bicircular Few-Cycle Mid-Ir Laser Pulses, M. V. Frolov, N. L. Manakov, A. A. Minina, N. V. Vvedenskii, A. A. Silaev, M. Yu. Ivanov, Anthony F. Starace 2018 Voronezh State University, Russia

Control Of Harmonic Generation By The Time Delay Between Two-Color, Bicircular Few-Cycle Mid-Ir Laser Pulses, M. V. Frolov, N. L. Manakov, A. A. Minina, N. V. Vvedenskii, A. A. Silaev, M. Yu. Ivanov, Anthony F. Starace

Anthony F. Starace Publications

We study control of high-order harmonic generation (HHG) driven by time-delayed, few-cycle ω and 2ω counterrotating mid-IR pulses. Our numerical and analytical study shows that the time delay between the two-color pulses allows control of the harmonic positions, both those allowed by angular momentum conservation and those seemingly forbidden by it. Moreover, the helicity of any particular harmonic is tunable from left to right circular without changing the driving pulse helicity. The highest HHG yield occurs for a time delay comparable to the fundamental period T = 2π/ω.


Production Of Photoionized Plasmas In The Laboratory With X-Ray Line Radiation, S. White, R. Irwin, J. R. Warwick, G. F. Gribakin, G. Sarri, F. P. Keenan, D. Riley, S. J. Rose, E. G. Hill, Gary J. Ferland, B. Han, F. Wang, G. Zhao 2018 Queen's University Belfast, UK

Production Of Photoionized Plasmas In The Laboratory With X-Ray Line Radiation, S. White, R. Irwin, J. R. Warwick, G. F. Gribakin, G. Sarri, F. P. Keenan, D. Riley, S. J. Rose, E. G. Hill, Gary J. Ferland, B. Han, F. Wang, G. Zhao

Physics and Astronomy Faculty Publications

In this paper we report the experimental implementation of a theoretically proposed technique for creating a photoionized plasma in the laboratory using x-ray line radiation. Using a Sn laser plasma to irradiate an Ar gas target, the photoionization parameter, ξ = 4πF/Ne, reached values of order 50erg cm s−1, where F is the radiation flux in erg cm−2 s−1. The significance of this is that this technique allows us to mimic effective spectral radiation temperatures in excess of 1 keV. We show that our plasma starts to be collisionally dominated before the peak of the ...


Enhancing High-Order Harmonic Generation By Sculpting Waveforms With Chirp, Dian Peng, M. V. Frolov, Liang-Wen Pi, Anthony F. Starace 2018 University of Nebraska - Lincoln

Enhancing High-Order Harmonic Generation By Sculpting Waveforms With Chirp, Dian Peng, M. V. Frolov, Liang-Wen Pi, Anthony F. Starace

Anthony F. Starace Publications

We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser field waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG cutoff energies. Specifically, we consider driving laser field waveforms composed of two ultrashort pulses having different carrier frequencies in each of which a linear chirp is introduced. Two pairs of carrier frequencies of the component pulses are considered: (ω, 2ω) and (ω, 3ω). Our results show how changing the signs of the chirps in each of the two component pulses leads to drastic changes in the HHG spectra. Our theoretical ...


Diffraction Of Laguerre Gaussian Vortex Beams, Anindya Ambuj 2018 University of Arkansas, Fayetteville

Diffraction Of Laguerre Gaussian Vortex Beams, Anindya Ambuj

Theses and Dissertations

The natural phenomenon of waves bending around obstacles is diffraction. Spatial characteristics of the diffraction pattern depends on the incident wave field, the shape, and size of the aperture. The diffraction of a plane wave of light by a slit and a circular aperture produce the sinc-squared and the Airy intensity patterns, respectively. On the contrary, the diffraction of Laguerre-Gauss vortex (LGV) beams by simple apertures such as a slit, circular apertures, and polygons show many unexpected features.

LGV beams have $\rho^{\ell}e^{i\ell\phi}$ transverse spatial dependence, where $\rho$ is the distance from the beam axis, $\phi ...


Magnetic Anisotropy And Exchange Bias In L10 Fept/Nio Bilayer Thin Films, Zachary B. Leuty 2018 Missouri State University

Magnetic Anisotropy And Exchange Bias In L10 Fept/Nio Bilayer Thin Films, Zachary B. Leuty

MSU Graduate Theses

Perpendicular exchange bias (PEB), particularly when it persists in nanomaterials to room temperature, is highly useful for applications in spintronic devices and for advancing the development of high-information-density magnetic random access memory. A complete mechanistic and theoretical understanding of exchange bias has evaded scientists. The quest to discover novel materials for magnetic and spintronic device applications has stimulated investigation into nanomaterials having optimal and/or tailored magnetic properties that are based on the exchange bias effect. In this study, pulsed laser deposition was used to grow epitaxial PEB systems of ferromagnetic FePt thin film layers that are interfaced with antiferromagnetic ...


Optimization Of Magnetic Chicane For Maximum Electron Beam Compression, Nathan W. Ray, Vida-Michelle Nixon, Matthias Fuchs 2018 University of Nebraska-Lincoln

Optimization Of Magnetic Chicane For Maximum Electron Beam Compression, Nathan W. Ray, Vida-Michelle Nixon, Matthias Fuchs

UCARE Research Products

Research concerned with optimizing a negatively chirped, relativistic, short electron beam using General Particle Tracer (GPT). The GPT simulations have the ability to include realistic beam effects such as space charge, fringe fields and emittance. A series of electron beam energy spreads were simulated through several different iterations of dipole magnets and, utilizing GPT's optimization ability, the most consistent set of parameters was selected and displayed on the poster. With our presented iteration of parameters we noted a 89.5% compression of the electron beam along the propagating axis.


Plasmonic Grating Geometrics And Wavelength-Dependent Focus Depth In Infrared Detectors, Patrick R. Kennedy 2018 Air Force Institute of Technology

Plasmonic Grating Geometrics And Wavelength-Dependent Focus Depth In Infrared Detectors, Patrick R. Kennedy

Theses and Dissertations

The objective for this research is to determine a relationship between plasmonic grating geometries and the wavelength-dependent focus depth. This research is focused on enhancing the signal collected by infrared detectors by using a metal grating as a planar lens to focus light in the detecting region of the substrate. This can be used to maintain a thinner absorbing region and possibly to create multi-color imaging in a single pixel. Simulations demonstrate that the plasmonic lens is capable of creating a wavelength dependent focus spot.


Excited Argon 1s5 Production In Microhollow Cathode Discharges, Richard D. Peterson 2018 Air Force Institute of Technology

Excited Argon 1s5 Production In Microhollow Cathode Discharges, Richard D. Peterson

Theses and Dissertations

Diode-pumped rare gas lasers (DPRGL) have been in development for their potential to become high energy lasers with excellent beam quality that is typical of gas lasers. DPRGL require metastable densities on the order of 1013 cm-3 at pressures around one atmosphere for efficient operation. Argon 1s5 number densities have been measured in microhollow cathode discharges (MHCD) using tunable diode laser absorption spectroscopy. The MHCD had copper electrodes with gaps of 127 and 254 µm and hole diameters from 100-400 µm. Absorbance was measured at pressures of 37 Torr up to 400 Torr, where absorbance could no longer ...


Optically Controlled Laser-Plasma Electron Acceleration For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick 2018 CEA, DAM DIF

Optically Controlled Laser-Plasma Electron Acceleration For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Thomson scattering (TS) from electron beams produced in laser-plasma accelerators may generate femtosecond pulses of quasi-monochromatic, multi-MeV photons. Scaling laws suggest that reaching the necessary GeVelectron energy, with a percent-scale energy spread and five-dimensional brightness over 10^16 A/m^2, requires acceleration in centimeter-length, tenuous plasmas (n ~ 10^17 cm^-#3;3), with petawatt-class lasers. Ultrahigh per-pulse power mandates single-shot operation, frustrating applications dependent on dosage. To generate high-quality near-GeV beams at a manageable average power (thus affording kHz repetition rate), we propose acceleration in a cavity of electron density, driven with an incoherent stack of sub-Joule laser pulses ...


Numerical Studies Of Electrohydrodynamic Flow Induced By Corona And Dielectric Barrier Discharges, Chaoao Shi 2018 The University of Western Ontario

Numerical Studies Of Electrohydrodynamic Flow Induced By Corona And Dielectric Barrier Discharges, Chaoao Shi

Electronic Thesis and Dissertation Repository

Electrohyrodynamic (EHD) flow produced by gas discharges allows the control of airflow through electrostatic forces. Various promising applications of EHD can be considered, but this requires a deeper understanding of the physical mechanisms involved.

This thesis investigates the EHD flow generated by three forms of gas discharge. First, a multiple pin-plate EHD dryer associated with the positive corona discharge is studied using a stationary model. Second, the dynamics of a dielectric barrier discharge (DBD) plasma actuator is simulated with a time-dependent solver. Third, different configurations of the extended DBD are explored to enhance the EHD flow.

The results of the ...


Time-Resolved Electron (E,2E) Momentum Spectroscopy: Application To Laser-Driven Electron Population Transfer In Atoms, Hua-Chieh Shao, Anthony F. Starace 2018 University of Nebraska - Lincoln

Time-Resolved Electron (E,2E) Momentum Spectroscopy: Application To Laser-Driven Electron Population Transfer In Atoms, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

Owing to its ability to provide unique information on electron dynamics, time-resolved electron momentum spectroscopy (EMS) is used to study theoretically a laser-driven electronic motion in atoms. Specifically, a chirped laser pulse is used to adiabatically transfer the populations of lithium atoms from the ground state to the first excited state. During this process, impact ionization near the Bethe ridge by time-delayed ultrashort, high-energy electron pulses is used to image the instantaneous momentum density of this electronic population transfer. Simulations with 100 fs and 1 fs pulse durations demonstrate the capability of EMS to image the time-varying momentum density, including ...


Optically Controlled Laser-Plasma Electron Accelerator For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick 2018 CEA, DAM DIF

Optically Controlled Laser-Plasma Electron Accelerator For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Generating quasi-monochromatic, femtosecond gamma-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent scale energy spread and five-dimensional brightness over 10^16 A/m^2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n ~ 10^19 cm^-􀀀3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition ...


Multi-Color, Femtosecond Gamma-Ray Pulse Trains Driven By Comb-Like Electron Beams, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick 2018 CEA, DAM DIF

Multi-Color, Femtosecond Gamma-Ray Pulse Trains Driven By Comb-Like Electron Beams, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Photon engineering can be exploited to control the nonlinear evolution of the drive pulse in a laser–plasma accelerator (LPA), offering new avenues to tailor electron beam phase space on a femtosecond time scale. One promising option is to drive an LPA with an incoherent stack of two sub-Joule, multi-TW pulses of different colors. Slow self-compression of the bi-color optical driver delays electron dephasing, boosting electron beam energy without accumulation of a massive low-energy tail. The modest energy of the stack affords kHz-scale repetition rate at manageable laser average power. Propagating the stack in a pre-formed plasma channel induces periodic ...


Digital Commons powered by bepress