Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,590 Full-Text Articles 3,994 Authors 345,609 Downloads 88 Institutions

All Articles in Condensed Matter Physics

Faceted Search

2,590 full-text articles. Page 1 of 76.

Implementing A Self-Corrected Chemical Potential Scheme In Determinant Quantum Monte Carlo Simulations, Kevin Gordon Kleiner 2019 University of Tennessee, Knoxville

Implementing A Self-Corrected Chemical Potential Scheme In Determinant Quantum Monte Carlo Simulations, Kevin Gordon Kleiner

University of Tennessee Honors Thesis Projects

No abstract provided.


Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel 2019 Iowa State University and Ames Laboratory

Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

To assess the energetics of Cu intercalation on defective graphite, the chemical potentials and binding energies for Cu at graphite step edges are calculated for three main configurations: an isolated atom, a chain, and an atom attached to a chain. As expected, for Cu interacting directly with a graphite step edge, the strength of interaction depends on the stability of the step, with Cu binding more strongly at a less-stable step. However, the relationship is reversed when considering binding of a Cu atom attached to a chain. Taken together, these trends mean that if the graphite step is less stable ...


Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel 2019 Iowa State University and Ames Laboratory

Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel

James W. Evans

To assess the energetics of Cu intercalation on defective graphite, the chemical potentials and binding energies for Cu at graphite step edges are calculated for three main configurations: an isolated atom, a chain, and an atom attached to a chain. As expected, for Cu interacting directly with a graphite step edge, the strength of interaction depends on the stability of the step, with Cu binding more strongly at a less-stable step. However, the relationship is reversed when considering binding of a Cu atom attached to a chain. Taken together, these trends mean that if the graphite step is less stable ...


Squeezed Nanocrystals: Equilibrium Configuration Of Metal Clusters Embedded Beneath The Surface Of A Layered Material, Scott E. Julien, Ann Lii-Rosales, Kai-tak Wan, Yong Han, Michael C. Tringides, James W. Evans, Patricia A. Thiel 2019 Northeastern University

Squeezed Nanocrystals: Equilibrium Configuration Of Metal Clusters Embedded Beneath The Surface Of A Layered Material, Scott E. Julien, Ann Lii-Rosales, Kai-Tak Wan, Yong Han, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Patricia A. Thiel

Shapes of functional metallic nanocrystals, typically synthesized either free in solution or supported on surfaces, are key for controlling properties. Here, we consider a novel new class of metallic nanocrystals, copper islands embedded near the surface of graphite, which can be considered a model system for metals embedded beneath surfaces of layered materials, or beneath supported membranes. We develop a continuum elasticity (CE) model for the equilibrium shape of these islands, and compare its predictions with experimental data. The CE model incorporates appropriate surface energy, adhesion energies, and strain energy. The agreement between the CE model and the data is ...


Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel 2019 Iowa State University and Ames Laboratory

Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Patricia A. Thiel

To assess the energetics of Cu intercalation on defective graphite, the chemical potentials and binding energies for Cu at graphite step edges are calculated for three main configurations: an isolated atom, a chain, and an atom attached to a chain. As expected, for Cu interacting directly with a graphite step edge, the strength of interaction depends on the stability of the step, with Cu binding more strongly at a less-stable step. However, the relationship is reversed when considering binding of a Cu atom attached to a chain. Taken together, these trends mean that if the graphite step is less stable ...


Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky 2019 Graduate Center, City University of New York

Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky

All Dissertations, Theses, and Capstone Projects

My research focuses on the analytical and numerical study of seemingly completely different systems - the classical critical point of the liquid-gas transition and a quantum topological defect (dislocation) in solid Helium-4. The unifying theme, though, is Emergence - the appearance of unexpected qualities at large distance and time scales in these systems. Our results resolve the long standing controversy about the nature of the liquid-gas criticality by showing with high confidence that it is the same as that of Ising ferromagnet. In solid 4He, a quantum superclimbing dislocation, which is expected to be violating space-time symmetry according to the elementary ...


Squeezed Nanocrystals: Equilibrium Configuration Of Metal Clusters Embedded Beneath The Surface Of A Layered Material, Scott E. Julien, Ann Lii-Rosales, Kai-tak Wan, Yong Han, Michael C. Tringides, James W. Evans, Patricia A. Thiel 2019 Northeastern University

Squeezed Nanocrystals: Equilibrium Configuration Of Metal Clusters Embedded Beneath The Surface Of A Layered Material, Scott E. Julien, Ann Lii-Rosales, Kai-Tak Wan, Yong Han, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

Shapes of functional metallic nanocrystals, typically synthesized either free in solution or supported on surfaces, are key for controlling properties. Here, we consider a novel new class of metallic nanocrystals, copper islands embedded near the surface of graphite, which can be considered a model system for metals embedded beneath surfaces of layered materials, or beneath supported membranes. We develop a continuum elasticity (CE) model for the equilibrium shape of these islands, and compare its predictions with experimental data. The CE model incorporates appropriate surface energy, adhesion energies, and strain energy. The agreement between the CE model and the data is ...


Near Room Temperature Antiferromagnetic Ordering With A Potential Low Dimensional Magnetism In Almn2b2, Tej N. Lamichhane, Khusboo Rana, Qisheng Lin, Sergey L. Bud’ko, Yuji Furukawa, Paul C. Canfield 2019 Iowa State University and Ames Laboratory

Near Room Temperature Antiferromagnetic Ordering With A Potential Low Dimensional Magnetism In Almn2b2, Tej N. Lamichhane, Khusboo Rana, Qisheng Lin, Sergey L. Bud’Ko, Yuji Furukawa, Paul C. Canfield

Chemistry Publications

We present self flux growth and characterization of single crystalline AlMn2B2. It is an orthorhombic (space group Cmmm), layered material with a plate like morphology. The anisotropic bulk magnetization data, electrical transport and 11B nuclear magnetic resonance(NMR) data revealed an antiferromagnetic (AFM) transition at 313 ± 2 K. In the magnetization data, there is also a broad local maximum significantly above the AFM transition that could be a signature of low dimensional magnetic interactions in AlMn2B2.


Imaging Stress And Magnetism At High Pressures Using A Nanoscale Quantum Sensor, S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. J. Smart, F. Machado, B. Kobrin, T. O. Hohn, N. Z. Rui, Mehdi Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V. V. Struzhkin, J. E. Moore, Valery I. Levitas, R. Jeanloz, N. Y. Yao 2018 University of California, Berkeley

Imaging Stress And Magnetism At High Pressures Using A Nanoscale Quantum Sensor, S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. J. Smart, F. Machado, B. Kobrin, T. O. Hohn, N. Z. Rui, Mehdi Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V. V. Struzhkin, J. E. Moore, Valery I. Levitas, R. Jeanloz, N. Y. Yao

Aerospace Engineering Publications

Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For ...


Boundary Twists, Instabilities, And Creation Of Skyrmions And Antiskyrmions, Aldo Raeliarijaona, Rabindra Nepal, Alexey Kovalev 2018 University of Nebraska - Lincoln

Boundary Twists, Instabilities, And Creation Of Skyrmions And Antiskyrmions, Aldo Raeliarijaona, Rabindra Nepal, Alexey Kovalev

Faculty Publications, Department of Physics and Astronomy

We formulate and study the general boundary conditions dictating the magnetization profile in the vicinity of an interface between magnets with dissimilar properties. Boundary twists in the vicinity of an edge due to Dzyaloshinskii-Moriya interactions have been first discussed by Wilson et al. [Phys. Rev. B 88, 214420 (2013)] and by Rohart and Thiaville [Phys. Rev. B 88, 184422 (2013)]. We show that in general case the boundary conditions lead to the magnetization profile corresponding to the Néel, Bloch, or intermediate twist. We explore how such twists can be utilized for creation of skyrmions and antiskyrmions, e.g., in a ...


Properties Of Si Quantum Dots, Carolyn C. F Cadogan 2018 The University of Western Ontario

Properties Of Si Quantum Dots, Carolyn C. F Cadogan

Electronic Thesis and Dissertation Repository

The fundamental properties of matter in confined particles change dramatically due to quantum effects. In this work, we have explored the optical properties of silicon quantum dots (Si-QDs) embedded in Si3N4; and the role of crystallinity on the optical properties and formation of Si-QDs in Al2O3. This work examined the role of (1) annealing temperature and the composition of the film, (2) Al doping of the host Si3N4 film, (3) doping Si-QDs and (4) Al and P passivation of Si-QDs on the PL intensity of Si-QDs embedded in Si3N ...


Computational Prediction, Characterization, And Methodology Development For Two-Dimensional Nanostructures: Phosphorene And Phosphide Binary Compounds., Congyan Zhang 2018 University of Louisville

Computational Prediction, Characterization, And Methodology Development For Two-Dimensional Nanostructures: Phosphorene And Phosphide Binary Compounds., Congyan Zhang

Electronic Theses and Dissertations

In this thesis, a comprehensive computational simulation was carried out for predicting, characterizing, and applications of two-dimensional (2D) materials. The newly discovered GaP and InP layers were selected as an example to demonstrate how to explore new 2D materials using computational simulations. The performance of phosphorene as the anode material of Lithium-ion battery was discussed as the example of the application of 2D material. Furthermore, the semi-empirical Hamiltonian for phosphorous and lithium elements have been developed for our future work on the application of phosphorus and lithium-based systems. The novel 2D materials of GaP and InP binary compounds were found ...


Magnetic Properties Of Single Crystalline Itinerant Ferromagnet Alfe2b2, Tej Lamichhane, Li Xiang, Qisheng Lin, Tribhuwan Pandey, David S. Parker, Tae-Hoon Kim, Lin Zhou, Matthew J. Kramer, Sergey L. Bud’ko, Paul C. Canfield 2018 Iowa State University and Ames Laboratory

Magnetic Properties Of Single Crystalline Itinerant Ferromagnet Alfe2b2, Tej Lamichhane, Li Xiang, Qisheng Lin, Tribhuwan Pandey, David S. Parker, Tae-Hoon Kim, Lin Zhou, Matthew J. Kramer, Sergey L. Bud’Ko, Paul C. Canfield

Qisheng Lin

Single crystals of AlFe2B2 have been grown using the self-flux growth method, and then we measured the structural properties, temperature- and field-dependent magnetization, and temperature-dependent electrical resistivity at ambient as well as high pressure. The Curie temperature of AlFe2B2 is determined to be 274 K. The measured saturation magnetization and the effective moment for the paramagnetic Fe ion indicate the itinerant nature of the magnetism with a Rhode-Wohlfarth ratio MCMsat≈1.14. Temperature-dependent resistivity measurements under hydrostatic pressure show that transition temperature TC is suppressed down to 255 K for p=2.24 GPa pressure with a suppression rate of ...


The Effects Of Pressure And Magnetic Field On Phase Transitions And Related Physical Properties In Solid State Caloric Materials, Ahmad Ikhwan Us Saleheen 2018 Louisiana State University and Agricultural and Mechanical College

The Effects Of Pressure And Magnetic Field On Phase Transitions And Related Physical Properties In Solid State Caloric Materials, Ahmad Ikhwan Us Saleheen

LSU Doctoral Dissertations

Solid-state caloric effects, such as the magnetocaloric (MCE) and barocaloric (BCE) effects, may be utilized in future cooling technologies that are more efficient and environment-friendly. Large caloric effects often occur near phase transitions, especially near coupled first-order magnetostructural transitions (MST), and are initiated by external parameters, such as magnetic field or hydrostatic pressure. In this dissertation, the effects of pressure, temperature, and magnetic field on the phase transitions in three material systems are studied in order to elucidate how the respective caloric effects are affected.

In the first study, the realization of a coupled MST in a MnNiSi-based system through ...


Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado 2018 University of New Mexico

Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado

Shared Knowledge Conference

Photonic crystals allow light to be controlled and manipulated such that novel photonic devices can be created. We are interested in using photonic crystals to increase the energy efficiency of our semiconductor whistle-geometry ring lasers. A photonic crystal will enable us to reduce the ring size, while maintaining confinement, thereby reducing its operating power. Photonic crystals can also exhibit slow light that will increase the interaction with the material. This will increase the gain, and therefore, lower the threshold for lasing to occur. Designing a photonic crystal for a particular application can be a challenge due to its number of ...


Two-Dimensional Layered Materials (Graphene-Mos2) Nanocatalysts For Hydrogen Production, Jacob Dobler, Taylor Robinson, Sanju Gupta 7455940 2018 Western Kentucky University

Two-Dimensional Layered Materials (Graphene-Mos2) Nanocatalysts For Hydrogen Production, Jacob Dobler, Taylor Robinson, Sanju Gupta 7455940

Posters-at-the-Capitol

Recent development of two-dimensional layered materials including graphene-family and related nanomaterials have arisen as potential game changer for energy, water and sensing applications. While graphene is a form of carbon arranged hexagonally within atomic thin sheet, MoS2 is becoming a popular, efficient, and cost-effective catalyst for electrochemical energy devices, in contrast to expensive platinum and palladium catalysts. In this work, we electrochemically desulfurize few-layer molybdenum disulfide (MoS2) and aerogels with reduced graphene oxide (rGO) prepared under hydrothermal conditions ((P< 20 bar, T< 200 oC), for improving hydrogen evolution reaction (HER) activity via point defects (S-vacancy). Moreover, the interactions between rGO and ...


Physical Properties Of Engineered Nanocomposites For Defense Applications, Alex Henson, Sanju Gupta 2018 Western Kentucky University

Physical Properties Of Engineered Nanocomposites For Defense Applications, Alex Henson, Sanju Gupta

Posters-at-the-Capitol

Polymer nanocomposites are significant for modern and future technologies (aerospace, defense, water purification etc.) due to their tailored properties, lightweight and low cost. However, ‘forward’ engineered polymer (host matrix) composites with smaller size nanoparticles (guest) providing desired properties targeting specific applications remains a challenging task as they depend largely on nanoparticles size, shape and loading (volume fraction). This study develops polymer nanocomposites impregnated with ‘organic-inorganic’ silsesquioxane nanoparticles and graphene nanoribbons, and investigates microscopic structure and dynamics of interfacial layer to predict macroscale properties. The nanocomposites consist of poly(2-vinylpyridine) (P2VP) polymer (segment ~5nm) with spherical silsesquioxane nanoparticles (diameter ~2-5nm) and ...


Rectifying Garbage-In Equals Garbage-Out Using A Secondary Electron Yield Materials Database, Phil Lundgreen, JR Dennison 2018 Utah State University

Rectifying Garbage-In Equals Garbage-Out Using A Secondary Electron Yield Materials Database, Phil Lundgreen, Jr Dennison

Presentations

No abstract provided.


An Introduction To Quantile-Quantile Plots For The Experimental Physicist, Allen Andersen, JR Dennison 2018 Utah State University

An Introduction To Quantile-Quantile Plots For The Experimental Physicist, Allen Andersen, Jr Dennison

Journal Articles

No abstract provided.


Non-Abelian Quasiholes In Lattice Moore-Read States And Parent Hamiltonians, Sourav Manna, Julia Wildeboer, Germán Sierra, Anne E. B. Nielsen 2018 Max-Planck-Institut für Physik komplexer Systeme, Germany

Non-Abelian Quasiholes In Lattice Moore-Read States And Parent Hamiltonians, Sourav Manna, Julia Wildeboer, Germán Sierra, Anne E. B. Nielsen

Physics and Astronomy Faculty Publications

This work concerns Ising quasiholes in Moore-Read type lattice wave functions derived from conformal field theory. We commence with constructing Moore-Read type lattice states and then add quasiholes to them. By use of Metropolis Monte Carlo simulations, we analyze the features of the quasiholes, such as their size, shape, charge, and braiding properties. The braiding properties, which turn out to be the same as in the continuum Moore-Read state, demonstrate the topological attributes of the Moore-Read lattice states in a direct way. We also derive parent Hamiltonians for which the states with quasiholes included are ground states. One advantage of ...


Digital Commons powered by bepress