Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

776 Full-Text Articles 1,086 Authors 37,752 Downloads 55 Institutions

All Articles in Elementary Particles and Fields and String Theory

Faceted Search

776 full-text articles. Page 1 of 26.

Cuoricino Thermal Pulse Classification By Machine Learning Algorithms, Joshua Mann 2018 California Polytechnic State University, San Luis Obispo

Cuoricino Thermal Pulse Classification By Machine Learning Algorithms, Joshua Mann

Physics

Many of the various properties of neutrinos are still a mystery. One unknown is whether neutrinos are Majorana fermions or Dirac fermions. Cuoricino and CUORE are experiments that aim to solve this mystery. Noise reduction in these experiments hinges on the ability to discern among alpha, beta and gamma particle detections using the thermal pulses they create. In this paper, we look at Cuoricino data and attempt to classify pulses, not as alpha, beta or gamma particles, but rather as signal, noise or calibration data. We will use this preliminary testing ground to examine various machine learning algorithms' abilities in ...


What Is A Photon? Introduction To Quantum Field Theory, Charles G. Torre 2018 Department of Physics, Utah State University

What Is A Photon? Introduction To Quantum Field Theory, Charles G. Torre

Charles G. Torre

This is a brief, informal, and relatively low-level course on the foundations of quantum field theory. The prerequisites are undergraduate courses in quantum mechanics and electromagnetism.


The Impact Of Ppb W/Z Lhc Data On Ncteq15 Parton Distribution Functions With An Emphasis On Refitting The Ncteq15 Npdf Set, Eric Godat 2018 Southern Methodist University

The Impact Of Ppb W/Z Lhc Data On Ncteq15 Parton Distribution Functions With An Emphasis On Refitting The Ncteq15 Npdf Set, Eric Godat

Physics Theses and Dissertations

As the LHC experiments increase their statistics and reduce their systematics, it is in- creasingly important to reduce the theoretical uncertainties so we can perform precision com- parisons. The parton distribution functions (PDFs) which describe the hadronic structure of protons and nuclei are the critical link between the experimental data and the proposed theoretical models; hence, a better understanding of the PDFs is essential for improved pre- dictions. Nuclear PDFs, in particular, have proven valuable in this regard, especially for flavor differentiation. I introduce ”nCTEQ+LHC,” the first PDF set fit using the nCTEQ formalism to include data from the ...


Lattice Scales From Gradient Flow And Chiral Analysis On The Milc Collaboration's Hisq Ensembles, Nathan Joseph Brown 2018 Washington University in St. Louis

Lattice Scales From Gradient Flow And Chiral Analysis On The Milc Collaboration's Hisq Ensembles, Nathan Joseph Brown

Arts & Sciences Electronic Theses and Dissertations

The interactions of quarks and gluons form most of the visible matter around us. Yet, extracting precise predictions from the field theory describing them, Quantum Chromodynamics (QCD), is notoriously difficult. By simulating the QCD interaction on a Euclidean space time lattice, the field theory can be regularized non-perturbatively and familiar statistical techniques from classical statistical mechanics can be applied. Then, by systematically improving each component of the process, high precision results can be obtained. Some of the possible components to be improved include the discretization of the continuum action, the determination of the lattice scale(s), the generation of gauge ...


Quantum Fields In Extreme Backgrounds, Leandro Medina de Oliveira 2018 Washington University in St. Louis

Quantum Fields In Extreme Backgrounds, Leandro Medina De Oliveira

Arts & Sciences Electronic Theses and Dissertations

Quantum field theories behave in interesting and nontrivial ways in the presence of intense electric and/or magnetic fields. Describing such behavior correctly, particularly at finite (nonzero) temperature and density, is of importance for particle physics, nuclear physics, astrophysics, condensed matter physics, and cosmology. Incorporating these conditions as external parameters also provides useful probes into the nonperturbative structure of gauge theories.

In this work, formalism for describing matter in a variety of extreme conditions is developed and implemented. We develop several expansions of one-loop finite temperature effects for spinor particles in the presence of magnetic fields, including the effects of ...


Enhancing High-Order Harmonic Generation By Sculpting Waveforms With Chirp, Dian Peng, M. V. Frolov, Liang-Wen Pi, Anthony F. Starace 2018 University of Nebraska - Lincoln

Enhancing High-Order Harmonic Generation By Sculpting Waveforms With Chirp, Dian Peng, M. V. Frolov, Liang-Wen Pi, Anthony F. Starace

Anthony F. Starace Publications

We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser field waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG cutoff energies. Specifically, we consider driving laser field waveforms composed of two ultrashort pulses having different carrier frequencies in each of which a linear chirp is introduced. Two pairs of carrier frequencies of the component pulses are considered: (ω, 2ω) and (ω, 3ω). Our results show how changing the signs of the chirps in each of the two component pulses leads to drastic changes in the HHG spectra. Our theoretical ...


Physics 516: Electromagnetic Phenomena (Spring 2018), Philip C. Nelson 2018 University of Pennsylvania

Physics 516: Electromagnetic Phenomena (Spring 2018), Philip C. Nelson

Department of Physics Papers

These course notes are made publicly available in the hope that they will be useful. All reports of errata will be gratefully received. I will also be glad to hear from anyone who reads them, whether or not you find errors: pcn@upenn.edu.


Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper 2018 Rowan University

Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper

Student Research Symposium Posters

Primordial black holes are thought to have been formed at the early stages of the universe in the presence of non-homogeneous density distributions of dark matter. We are working under the assumption that dark matter consists of elementary low mass particles, specifically, spin 1/2 fermions. We further assume that dark matter is electrically neutral, thus its main interaction is gravitational. We investigate dark matter spin 1/2 fermions in orbit around a black hole atom and consider mass ranges for which the quantum description is appropriate. Solutions to the Dirac equation are utilized to describe the radial mass distribution ...


Timelike Compton Scattering In The Gluex Experiment At Jefferson Lab, Alexandra Cramer 2018 College of William and Mary

Timelike Compton Scattering In The Gluex Experiment At Jefferson Lab, Alexandra Cramer

Undergraduate Honors Theses

The structure of protons is a point of interest in nuclear physics due to the lack of consensus between the cumulative spin of a proton and the sum of the spins of its constituent quarks. In the GlueX Experiment at the Jefferson Lab Continuous Electron Beam Accelerator Facility (CEBAF), a particle physics process known as Timelike Compton Scattering (TCS), given by the reaction 𝛾𝑝 → 𝑝𝑒+𝑒-, can be used to help potentially explain this discrepancy. With an eventual goal of providing a comparison of the experimental GlueX TCS data to Generalized Parton Distribution (GPD) models, initial research focused on isolating ...


Pion Charge Exchange Cross Section On Liquid Argon, Kevin Nelson 2018 College of William and Mary

Pion Charge Exchange Cross Section On Liquid Argon, Kevin Nelson

Undergraduate Honors Theses

The discovery of neutrino oscillations allows for new studies on charge-parity (CP) violation in the neutrino sector. Such studies require detectors with high calorimetric and spatial resolution. The Liquid Argon Time Projection Chamber (LArTPC) is a new detector technology with higher energy and spatial resolution than previous neutrino detectors. The Liquid Argon In A Testbeam (LArIAT) experiment is a research and development LArTPC for the next generation of detectors. In this paper I present a methodology for measuring the pion Charge-Exchange (CEX) cross section with the LArIAT detector. This methodology uses the theory of the passage of particles through matter ...


Cosmic Ray Muons In The Standard Model Of Fundamental Particles, Angel Gutarra-Leon, Jorge Del Carpio Arispe, Cioli Barazandeh, Walerian Majewski 2018 George Mason University

Cosmic Ray Muons In The Standard Model Of Fundamental Particles, Angel Gutarra-Leon, Jorge Del Carpio Arispe, Cioli Barazandeh, Walerian Majewski

Exigence

Muons are one of the twelve fundamental particle types of matter, having relatively long free-particle lifetime. A muon decays into three other light particles (leptons) through action of the “weak” force, transmitted by the so-called “heavy photons” - bosons W+/W-. Muons are present in the secondary cosmic ray showers in the atmosphere and reach the sea level. By detecting the delay time between arrival of the muon and an appearance of the decay electron in our single scintillation detector, we measured the muon’s average lifetime at rest in the material of our detector. This compares well with the established ...


Time-Resolved Electron (E,2E) Momentum Spectroscopy: Application To Laser-Driven Electron Population Transfer In Atoms, Hua-Chieh Shao, Anthony F. Starace 2018 University of Nebraska - Lincoln

Time-Resolved Electron (E,2E) Momentum Spectroscopy: Application To Laser-Driven Electron Population Transfer In Atoms, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

Owing to its ability to provide unique information on electron dynamics, time-resolved electron momentum spectroscopy (EMS) is used to study theoretically a laser-driven electronic motion in atoms. Specifically, a chirped laser pulse is used to adiabatically transfer the populations of lithium atoms from the ground state to the first excited state. During this process, impact ionization near the Bethe ridge by time-delayed ultrashort, high-energy electron pulses is used to image the instantaneous momentum density of this electronic population transfer. Simulations with 100 fs and 1 fs pulse durations demonstrate the capability of EMS to image the time-varying momentum density, including ...


Light-Nuclei Spectra From Chiral Dynamics, M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, Ewing Lusk, L. E. Marcucci, Steven C. Pieper, R. Schiavilla, M, Viviani, R. B. Wiringa 2018 Old Dominion University

Light-Nuclei Spectra From Chiral Dynamics, M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, Ewing Lusk, L. E. Marcucci, Steven C. Pieper, R. Schiavilla, M, Viviani, R. B. Wiringa

Physics Faculty Publications

In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels ...


Search For Long-Lived, Massive Particles Decaying Into Dimuon Vertices In Pp Collisions At 13 Tev With The Atlas Detector At The Lhc, Nathan Bernard 2018 University of Massachusetts Amherst

Search For Long-Lived, Massive Particles Decaying Into Dimuon Vertices In Pp Collisions At 13 Tev With The Atlas Detector At The Lhc, Nathan Bernard

Doctoral Dissertations

A search for long-lived, massive particles decaying into dimuon pairs, in 32.9 fb-1 of data analyzed from the ATLAS detector is presented. Two signal models are considered: GGM SUSY, where the long lived particle mass is between 300-1000 GeV, and the dark photon model, where the ZD mass is between 20-60 GeV. An excess over the predicted background is observed in the GGM channel, however the angular/kinematic distributions of the excess vertices are consistent with a detec- tor/conditions related issue. A modified selection is used for the GGM channel which increases the signal sensitivity. 95 ...


Warp Drive Spacetimes, Nicholas A.S. Driver 2018 Virginia Commonwealth University

Warp Drive Spacetimes, Nicholas A.S. Driver

Theses and Dissertations

The concept of faster than light travel in general relativity is examined, starting with a review of the Alcubierre metric. This spacetime, although incredible in its implications, has certain unavoidable problems which are discussed in detail. It is demonstrated that in order to describe faster than light travel without any ambiguities, a coordinate independent description is much more convenient. An alternative method of describing superluminal travel is then proposed, which has similarities to the Krasnikov tube.


Geodesic Structure In Schwarzschild Geometry With Extensions In Higher Dimensional Spacetimes, Ian M. Newsome 2018 Virginia Commonwealth University

Geodesic Structure In Schwarzschild Geometry With Extensions In Higher Dimensional Spacetimes, Ian M. Newsome

Theses and Dissertations

From Birkoff's theorem, the geometry in four spacetime dimensions outside a spherically symmetric and static, gravitating source must be given by the Schwarzschild metric. This metric therefore satisfies the Einstein vacuum equations. If the mass which gives rise to the Schwarzschild spacetime geometry is concentrated within a radius of r=2M, a black hole will form. Non-accelerating particles (freely falling) traveling through this geometry will do so along parametrized curves called geodesics, which are curved space generalizations of straight paths. These geodesics can be found by solving the geodesic equation. In this thesis, the geodesic structure in the Schwarzschild ...


High Field Q Slope And The Effect Of Low-Temperature Baking At 3 Ghz, G. Ciovati, G. Eremeev, F. Hannon 2018 Old Dominion University

High Field Q Slope And The Effect Of Low-Temperature Baking At 3 Ghz, G. Ciovati, G. Eremeev, F. Hannon

Physics Faculty Publications

A strong degradation of the unloaded quality factor with field, called high field Q slope, is commonly observed above Bp ≅ 100 mT in elliptical superconducting niobium cavities at 1.3 and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above Bp ≅ 100 mT. The measurements show that a high field Q slope phenomenon limits the field reach at this frequency, that the high field Q slope onset field depends weakly on the frequency, and that the high field Q slope can be removed by the typical empirical solution of ...


Simulation Of Inverse Compton Scattering And Its Implications On The Scattered Linewidth, N. Ranjan, B. Terzić, G. A. Krafft, V. Petrillo, I. Drebot, L. Serafini 2018 Old Dominion University

Simulation Of Inverse Compton Scattering And Its Implications On The Scattered Linewidth, N. Ranjan, B. Terzić, G. A. Krafft, V. Petrillo, I. Drebot, L. Serafini

Physics Faculty Publications

Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model to ...


Resonances From Lattice Qcd, Raúl A. Briceño 2018 Old Dominion University

Resonances From Lattice Qcd, Raúl A. Briceño

Physics Faculty Publications

The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows for ...


Scattering Processes And Resonances From Lattice Qcd, Raúl A. Briceño, Jozef J. Dudek, Ross D. Young 2018 Old Dominion University

Scattering Processes And Resonances From Lattice Qcd, Raúl A. Briceño, Jozef J. Dudek, Ross D. Young

Physics Faculty Publications

The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter ...


Digital Commons powered by bepress