Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1329 Full-Text Articles 2548 Authors 133608 Downloads 88 Institutions

All Articles in Atomic, Molecular and Optical Physics

Faceted Search

1329 full-text articles. Page 1 of 35.

Breit-Pauli Atomic Structure Calculations For Si Iii, Christine D. Griffin 2016 Clark Atlanta University

Breit-Pauli Atomic Structure Calculations For Si Iii, Christine D. Griffin

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

Theoretical study of energy levels, oscillator strengths, transition probabilities, and lifetimes of Si III lines has been reported in this thesis. These atomic parameters are required for the interpretation of emission and absorption lines of Si III and for the modeling of astrophysical plasmas including Galactic High Velocity Clouds (HVCs), the Sun, and white dwarf stars. We used Hartree-Fock (HF) and Multiconfiguration Hartree-Fock (MCHF) methods in our calculations. We have considered 58 levels of the 3s2, 3s3p, 3p2, 3s3d, 3s4s, 3s4p, 3s4d, 3s4f, 3s5s, 3s5p, 3s5d, 3s6s, and 3s5f configurations. The relativistic corrections are included in Breit-Pauli approximation ...


Linear Feedback Stabilization For A Continuously Monitored Qubit, Taylor Lee Patti, A. Chantasri, Justin Dressel, A. N. Jordan 2016 Chapman University

Linear Feedback Stabilization For A Continuously Monitored Qubit, Taylor Lee Patti, A. Chantasri, Justin Dressel, A. N. Jordan

Student Research Day Abstracts and Posters

In quantum mechanics, standard or strong measurement approaches generally result in the collapse of an ensemble of wavefunctions into a stochastic mixture of eigenstates. On the other hand, continuous or weak measurements have the propensity to dynamically control the evolution of quantum states over time, guiding the trajectory of the state into non-trivial superpositions and maintaining state purity. This kind of measurement-induced state steering is of great theoretical and experimental interest for the harnessing of quantum bits or "qubits", which are the fundamental unit of the emerging quantum computer. We explore continuous measurement-based quantum state stabilization through linear feedback control ...


Cavity Ringdown Spectroscopy In Nitrogen/Oxygen Mixtures In The Presence Of Alpha Radiation, Sidney John Gautrau 2016 University of Southern Mississippi

Cavity Ringdown Spectroscopy In Nitrogen/Oxygen Mixtures In The Presence Of Alpha Radiation, Sidney John Gautrau

Master's Theses

This research was part of an effort to experimentally validate computational models under development for radiation-induced atmospheric effects. Cavity Ringdown Spectroscopy (CRDS) was used to measure the concentration of chemical products generated as a result of radiation interactions in a controlled atmosphere. Experiments were conducted in a vacuum chamber interfaced with a gas introduction system that controlled the initial atmospheric composition. A quadrupole mass spectrometer and tunable dye laser were integrated to confirm initial atmospheric composition, and provide wavelength flexibility for detecting a variety of chemical products generated by radiation interactions. CRDS measurements were made for ozone production resulting from ...


Experimental Study On The Production Of Negative Ion Copper Clusters And Applications, Ran Chu 2016 University of Tennessee, Knoxville

Experimental Study On The Production Of Negative Ion Copper Clusters And Applications, Ran Chu

Masters Theses

At the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratories (ORNL), we investigated the formation, production and potential application of negative-ion copper clusters using mass distributions of negative-ion copper clusters obtained by bombarding various copper samples with Cs ions. The Cu samples – in very large mass-selected clusters Cu (e.g. n=54) – included natural Cu, isotopically enriched copper-63 and copper-65, and electroformed ultra-clean Cu. Mass spectra of negative copper cluster produced by Cs sputter source size up to 50 are shown for the first time.

Three main features were observed for all four copper samples: the intensity ...


Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan 2016 CUNY Graduate Center and CUNY Brooklyn College

Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The Schrödinger theory of electrons in an external electromagnetic field can be described from the perspective of the individual electron via the ‘Quantal Newtonian’ laws (or differential virial theorems). These laws are in terms of ‘classical’ fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) In addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects ...


A Measuring Method For Abundance Of Uranium Components Based On Active Source Of Neutron, Li Li, Gen Hu, Keqi Liu 2016 South West University of Science and Technology

A Measuring Method For Abundance Of Uranium Components Based On Active Source Of Neutron, Li Li, Gen Hu, Keqi Liu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Diffractive Imaging Of Coherent Nuclear Motion In Isolated Molecules, Jie Yang, Markus Guehr, Xiaozhe Shen, Renkai Li, Theodore Vecchione, R. N. Coffee, Jeff Corbett, Alan Fry, Nick Hartmann, Carsten Hast, Kareem Hegazy, Keith Jobe, Igor Makasyuk, Joseph Robinson, Matthew S. Robinson, Sharon Vetter, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion 2016 University of Nebraska-Lincoln

Diffractive Imaging Of Coherent Nuclear Motion In Isolated Molecules, Jie Yang, Markus Guehr, Xiaozhe Shen, Renkai Li, Theodore Vecchione, R. N. Coffee, Jeff Corbett, Alan Fry, Nick Hartmann, Carsten Hast, Kareem Hegazy, Keith Jobe, Igor Makasyuk, Joseph Robinson, Matthew S. Robinson, Sharon Vetter, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion

Martin Centurion Publications

Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 Å and temporal resolution of 230 fs full width at half maximum. The method is not only sensitive to the position but also the shape of the nuclear wave packet.


Feasibility Of The Use Of Neutron Activation Analysis Techniques In An Underwater Environment, Michael D. Chick 2016 Western Kentucky University

Feasibility Of The Use Of Neutron Activation Analysis Techniques In An Underwater Environment, Michael D. Chick

Masters Theses & Specialist Projects

Elements when bombarded with neutrons emit a gamma ray that is characteristic of the isotope that underwent a neutron induced nuclear reaction; this is known as neutron activation. The characteristic gamma energy of an isotope can then be detected and recorded. One can then analyze the gamma energies captured and determine the elemental makeup of the sample. This form of analysis can be used in an underwater environment making it potentially a valuable tool for agencies tasked with maritime security of ports and waterways, or clean-up operations. This thesis will focus on the feasibility of neutron interrogation using pulsed fast ...


Investigation Of Multi-Photon Excitation In Argon With Applications In Hypersonic Flow Diagnostics, Jack L. Mills 2016 Old Dominion University

Investigation Of Multi-Photon Excitation In Argon With Applications In Hypersonic Flow Diagnostics, Jack L. Mills

Physics Theses & Dissertations

Non-intrusive flow diagnostics are essential for studying the physics of hypersonic flow wake regions. To advance the development of next generation hypersonic vehicles and to improve computational fluid dynamics techniques in the hypersonic regime, NASA needs a suitable non-intrusive diagnostic technique to measure velocity, density, and temperature. We will present our work on developing a seedless, non-intrusive diagnostic technique using excited state argon atoms, prepared via multi-photon excitation. In this dissertation, we report results on the first phase of this hypersonic wake measurement project. In particular, we have redesigned and characterized the performance of a high energy, nanosecond pulsed Ti ...


Control Of Spontanous Emission From Quantum Emitters Using Hyperbolic Metamaterial Substrates, Tal Galfsky 2016 The Graduate Center, City University of New York

Control Of Spontanous Emission From Quantum Emitters Using Hyperbolic Metamaterial Substrates, Tal Galfsky

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

Hyperbolic metamaterials (HMMs) are so named for possessing a hyperboloid-shaped dispersion which gives rise to a large photonic density of states. Quantum emitters placed inside or in the near-field of a HMM have been shown to exhibit strong enhancement of spontaneous emission due to the increase in available states. This thesis focuses on enhancing spontaneous emission of quantum emitters in optical frequencies by utilizing multilayered metal/dielectric composites that form these highly anisotropic metamaterials. In conjunction with the enhanced decay rate we experimentally demonstrate two methods for shaping and directing radiation trapped in the HMM into free space by employing ...


Imaging Population Transfer In Atoms With Ultrafast Electron Pulses, Hua-Chieh Shao, Anthony F. Starace 2016 Purdue University

Imaging Population Transfer In Atoms With Ultrafast Electron Pulses, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

We propose the use of ultrafast electron diffraction (UED) to image a controllable, laser-driven coherent electron population transfer in lithium atoms with currently available femtosecond electron pulses. Our simulations demonstrate the ability of ultrafast electrons to image such an electronic population transfer, thus validating UED as a direct means of investigating electron dynamics. Provided the incident electron pulses have sufficient temporal resolution, the diffraction images are shown to resolve also the relative phases of the target electronic wave functions.


Quantum Cascade Laser Measurements Of Line Intensities, N2-, O2- And Ar- Collisional Broadening Coefficients Of N2o In The L3 Band Near 4.5 Μm, Et-touhami Es-sebbar, Meriem Meriem Deli, Aamir Farooq 2016 Paul Scherrer Institute (PSI)

Quantum Cascade Laser Measurements Of Line Intensities, N2-, O2- And Ar- Collisional Broadening Coefficients Of N2o In The L3 Band Near 4.5 Μm, Et-Touhami Es-Sebbar, Meriem Meriem Deli, Aamir Farooq

Dr. Et-touhami Es-sebbar

This study deals with precise measurements of absolute line intensities, N2-, O2- and Ar- collisional broadening coefficients of N2O in the P-branch of the ν3 vibrational band near 4.5 µm. Collisional broadening coefficients of N2O-air are derived from the N2- and O2- broadening contributions by considering an ideal atmospheric composition. Studies are performed at room temperature for 10 rotational transitions over 2190–2202 cm–1 spectral range using a distributed-feedback quantum cascade laser. To retrieve spectroscopic parameters for each individual transition, measured absorption line shape is simulated within Voigt and Galatry profiles. The obtained results compare well with previous ...


Enhancement Of Hopping Conductivity By Spontaneous Fractal Ordering Of Low-Energy Sites, Tianran Chen, Brian Skinner 2016 West Chester University of Pennsylvania

Enhancement Of Hopping Conductivity By Spontaneous Fractal Ordering Of Low-Energy Sites, Tianran Chen, Brian Skinner

Physics

Variable-range hopping conductivity has long been understood in terms of a canonical prescription for relating the single-particle density of states to the temperature-dependent conductivity. Here we demonstrate that this prescription breaks down in situations where a large and long-ranged random potential develops. In particular, we examine a canonical model of a completely compensated semiconductor, and we show that at low temperatures hopping proceeds along self-organized, low-dimensional subspaces having fractal dimension d = 2. We derive and study numerically the spatial structure of these subspaces, as well as the conductivity and density of states that result from them. One of our prominent ...


Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Gavin D. Buffington, Clifton D. Clark 2016 Fort Hays State University

Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Gavin D. Buffington, Clifton D. Clark

Gavin Buffington

A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ∼0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a ...


Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Gavin D. Buffington, Clifton D. Clark 2016 Fort Hays State University

Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Gavin D. Buffington, Clifton D. Clark

Clifton D. Clark

A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ∼0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a ...


Electron Correlations In Local Effective Potential Theory, Viraht Sahni, Xiao-Yin Pan, Tao Yang 2016 CUNY Graduate Center and CUNY Brooklyn College

Electron Correlations In Local Effective Potential Theory, Viraht Sahni, Xiao-Yin Pan, Tao Yang

Publications and Research

Local effective potential theory, both stationary-state and time-dependent, constitutes the mapping from a system of electrons in an external field to one of the noninteracting fermions possessing the same basic variable such as the density, thereby enabling the determination of the energy and other properties of the electronic system. This paper is a description via Quantal Density Functional Theory (QDFT) of the electron correlations that must be accounted for in such a mapping. It is proved through QDFT that independent of the form of external field, (a) it is possible to map to a model system possessing all the basic ...


Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa 2016 The University of Western Ontario

Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa

Electronic Thesis and Dissertation Repository

The Kohn-Sham density functional theory relies on approximating the exchange-correlation energy functional or the corresponding potential. The behavior of the exchange-correlation potential as a function of position in a system can be used to detect and correct deficiencies of the parent functional. The too-fast decay of the potentials derived from common density functionals is a major problem, because it causes inaccurate Rydberg excitation energies and erroneous fractional charges in dissociating molecules. An efficient method to correct the shape of the exchange-correlation potential was proposed by Gaiduk et al. [A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev ...


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev 2016 North Carolina State University at Raleigh

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of common ...


Hyperpolarized 3he Magnetic Resonance Imaging Phenotypes Of Chronic Obstructive Pulmonary Disease, Damien Pike 2016 The University of Western Ontario

Hyperpolarized 3he Magnetic Resonance Imaging Phenotypes Of Chronic Obstructive Pulmonary Disease, Damien Pike

Electronic Thesis and Dissertation Repository

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the world. Identifying clinically relevant COPD phenotypes has the potential to reduce the global burden of COPD by helping to alleviate symptoms, slow disease progression and prevent exacerbation by stratifying patient cohorts and forming targeted treatment plans. In this regard, quantitative pulmonary imaging with hyperpolarized 3He magnetic resonance imaging (MRI) and thoracic computed tomography (CT) have emerged as ways to identify and measure biomarkers of lung structure and function. 3He MRI may be used as a tool to probe both functional and structural properties of the lung ...


Observations Of High Vibrational Levels Of The 4fσ 41Σ+ U State Of H2, Alexander M. Chartrand, Robert C. Ekey Jr., Elizabeth F. McCormack 2016 Bryn Mawr College

Observations Of High Vibrational Levels Of The 4fσ 41Σ+ U State Of H2, Alexander M. Chartrand, Robert C. Ekey Jr., Elizabeth F. Mccormack

Physics Faculty Research and Scholarship

Resonantly enhanced multiphoton ionization via the EF 1Σg+, v′ = 6 double-well state has been used to probe the energy region below the third dissociation limit of H2 where several high vibrational levels of the 41Σu+ state are expected. Theoretical ab initio potential energy curves for this state predict a deep inner well and shallow outer well where vibrational levels above v = 8 are expected to exhibit the double-well character of the state. Since the 41Σu+ state has f-state character, transitions to it from the ground state are nominally forbidden. However ...


Digital Commons powered by bepress