Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1406 Full-Text Articles 2718 Authors 133608 Downloads 97 Institutions

All Articles in Atomic, Molecular and Optical Physics

Faceted Search

1406 full-text articles. Page 1 of 38.

Quantum Optical Interferometry And Quantum State Engineering, Richard J. Birrittella Jr 2017 The Graduate Center, City University of New York

Quantum Optical Interferometry And Quantum State Engineering, Richard J. Birrittella Jr

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

We highlight some of our research done in the fields of quantum optical interferometry and quantum state engineering. We discuss the body of work for which our research is predicated, as well as discuss some of the fundamental tenants of the theory of phase estimation. We do this in the context of quantum optical interferometry where our primary interest lies in the calculation of the quantum Fisher information as it has been shown that the minimum phase uncertainty obtained, the quantum Cramer-Rao bound, is saturated by parity-based detection methods. We go on to show that the phase uncertainty one obtains ...


Time-Resolved Thz Conductivity Of An Intermediate Band Semiconductor, Elliot Weiss 2017 Macalester College

Time-Resolved Thz Conductivity Of An Intermediate Band Semiconductor, Elliot Weiss

Macalester Journal of Physics and Astronomy

Intermediate band materials have promising applications as affordable, highly efficient solar materials. However, intermediate band solar cells exhibit low efficiency to date. Carrier recombination is a critical process that limits efficiency. If electrons relax to the valence band before they can be collected, their energy is lost. To help understand the recombination dynamics and physical properties of intermediate band semiconductors, we obtain time-resolved THz conductivity measurements of the intermediate band semiconductor, GaPAsN, at various temperatures. From our results, we build a model that provides insight to the recombination dynamics of GaPAsN.


Intervalley Scattering Rates In Tellurium Observed Via Time-Resolved Terahertz Spectroscopy, Joshua R. Rollag 2017 Macalester College

Intervalley Scattering Rates In Tellurium Observed Via Time-Resolved Terahertz Spectroscopy, Joshua R. Rollag

Macalester Journal of Physics and Astronomy

We conducted time-resolved terahertz spectroscopy measurements on the elemental semiconductor tellurium. Pump-probe measurements were used to find the conductivity as a function of time in single crystalline tellurium samples. It was found that the excitation dynamics in tellurium changes for photon energies of 1.03 eV and 1.55 eV. The change in these excitation dynamics was attributed to intervalley scattering effects. A model using intervalley scattering and Auger recombination was fit to the data, giving a value of 2.28 ps for the intervalley scattering time constant in tellurium.


Conductivity Measurements Of A Thermoelectric Nanomaterial Through Thz Spectroscopy, Michaela S. Koller, James Heyman, Gunnar Footh 2017 Macalester College

Conductivity Measurements Of A Thermoelectric Nanomaterial Through Thz Spectroscopy, Michaela S. Koller, James Heyman, Gunnar Footh

Macalester Journal of Physics and Astronomy

In today’s society there is a great demand on energy output—in the United States alone we rely heavily on non-renewable energy sources. Thermoelectric materials may be able to be used to create more efficient energy systems or recover wasted heat from inefficient technologies. This paper focuses on the conductivity of a new thermoelectric material that incorporates copper into a tellurium nanowire PEDOT:PSS material. The addition of copper seems to increase the conductivity of the material, although the exact relationship between the percentage of copper to tellurium and its affect on the conductivity is uncertain from the results.


Quasi-Optical Measurement For Low Loss Material Characterization In Submillimeter Wave Range, Ha Khiem Tran, Thanh Ngoc Dan Le, Branimir Pejcinovic 2017 Portland State University

Quasi-Optical Measurement For Low Loss Material Characterization In Submillimeter Wave Range, Ha Khiem Tran, Thanh Ngoc Dan Le, Branimir Pejcinovic

Student Research Symposium

An accurate knowledge of dielectric constant of materials is required in many sub-millimeter wave applications. Free-space measurement of materials has always been one of the first choices due to their non-destructive nature and relatively simple sample preparation. However, free-space measurement systems at sub-millimeter frequency range suffer from two main problems: high loss because of divergent beam pattern and diffraction when the beam waist of the radiated beam is relatively large compared to the size of the sample under tests. In order to mitigate these issues, we set up a quasi-optical system using off-axis parabolic mirrors, which enhance the dynamic range ...


Discontinuities In The Electromagnetic Fields Of Vortex Beams In The Complex Source-Sink Model, Andrew Vikartofsky, Liang-Wen Pi, Anthony F. Starace 2017 University of Nebraska - Lincoln

Discontinuities In The Electromagnetic Fields Of Vortex Beams In The Complex Source-Sink Model, Andrew Vikartofsky, Liang-Wen Pi, Anthony F. Starace

Anthony F. Starace Publications

An analytical discontinuity is reported in what was thought to be the discontinuity-free exact nonparaxial vortex beam phasor obtained within the complex source-sink model. This discontinuity appears for all odd values of the orbital angular momentum mode. Such discontinuities in the phasor lead to nonphysical discontinuities in the real electromagnetic field components. We identify the source of the discontinuities, and provide graphical evidence of the discontinuous real electric fields for the first and third orbital angular momentum modes. A simple means of avoiding these discontinuities is presented.


Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding 2017 Illinois Wesleyan University

Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding

Honors Projects

This thesis begins with a foundational section on quantum optics. The single-photon detectors used in the first chapter were obtained through the Advanced Laboratory Physics Association (ALPhA), which brokered reduced cost for educational use, and the aim of the single-photon work presented in Chapter 1 is to develop modules for use in Illinois Wesleyan's instructional labs beyond the first year of university. Along with the American Association of Physics Teachers, ALPhA encourages capstone-level work, such as Chapter 1 of this honors thesis, which is explicitly designed to play the role of passing on, to a next generation of physics ...


Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul 2017 Ursinus College

Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul

Physics and Astronomy Honors Papers

We explore this two photon assisted transition through computational and numerical analysis of possible energy levels. We calculate the matrix elements of the energy transition in detail discussing constants and the quantum mechanical possibilities of energy exchanges in these systems.

The goal is to better understand the energy exchange, so that moving forward we can control it. This paper covers the theoretical ends to controlling the energy transition by the way of two photon assisted transitions. The energy transitions take place between a dipole-dipole interaction, and a microwave photon.


Using An Atomic Molecular Optics Laboratory For Undergraduate Research And Mentoring Of Physics Students In Georgia, Matthew P. Dallas 2017 Georgia College and State University

Using An Atomic Molecular Optics Laboratory For Undergraduate Research And Mentoring Of Physics Students In Georgia, Matthew P. Dallas

Georgia College Student Research Events

Using an Atomic Molecular Optics Laboratory for Undergraduate Research and Mentoring of Physics Students in Georgia

An Atomic and Molecular Optical (AMO) Physics research lab is an excellent tool to train and mentor undergraduate students in advanced laboratory techniques. Students gain valuable basic experience in experimental designs, data acquisition techniques, working with high precision optical equipment, building electronics, and working in the machine shop. The current project is building and testing an enclosure for the diode laser to reduce sound and vibrational interference. In addition, we are developing and evaluating a new, more compact laser cavity which is 3d printed ...


Determination Of The Zinc Concentration In Human Fingernails By Laser-Induced Breakdown Spectroscopy, Steven J. Rehse, Vlora A. Riberdy, Christopher J. Frederickson 2017 University of Windsor

Determination Of The Zinc Concentration In Human Fingernails By Laser-Induced Breakdown Spectroscopy, Steven J. Rehse, Vlora A. Riberdy, Christopher J. Frederickson

Physics Publications

The absolute concentration of zinc in human fingernail clippings tested ex vivo was determined by 1064 nm laser-induced breakdown spectroscopy and confirmed by speciated isotope dilution mass spectrometry. A nail testing protocol that sampled across the nail (perpendicular to the direction of growth) was developed and validated by scanning electron microscopy energy dispersive x-ray spectroscopy. Using this protocol, a partial least squares regression model predicted the zinc concentration in five subjects’ fingernails to within 7 ppm on average. The variation of the zinc concentration with depth into the nail as determined by laser-induced breakdown spectroscopy was studied and found to ...


The Cryogenic Buffer Gas Beam And The Spectroscopy Of Carbon Clusters, Benjamin Rainier Mobley 2017 University of Colorado, Boulder

The Cryogenic Buffer Gas Beam And The Spectroscopy Of Carbon Clusters, Benjamin Rainier Mobley

Physics Undergraduate Contributions

Cryogenic buffer gas beams are a useful source of cold molecules to be used in cold chemical experiments. The goal of this experiment is to create a functional buffer gas beam that can be adapted to source a variety of molecules. The apparatus is explained. Carbon clusters are useful initial molecules to study while the beam is in its preliminary phases. This thesis includes a literature review on previous experiments involving carbon clusters in order to gather the necessary information to identify spectral peaks and create a comparison benchmark for the products of our buffer gas beam.


Implementation And Characterization Of A Magneto-Optical Trap, Michael Anthony Highman 2017 Otterbein University

Implementation And Characterization Of A Magneto-Optical Trap, Michael Anthony Highman

Honors Thesis Projects

Rydberg atoms are those which have their valence electron excited to high principal quantum number n. Atoms in the Rydberg state are the research focus of the experiment from which this paper derives. Rydberg atoms are fragile, and thermal collisions are enough to ionize and destroy the Rydberg state. A magneto-optical trap (MOT) serves the purpose of "ultra-cooling" atoms to temperatures around 140 micro-Kelvin and dramatically reduces the impact of thermal collisions. This paper details the theory and equipment necessary to realize a MOT of rubidium-85. It will then discuss the characterization of the MOT we implemented by a technique ...


Tio2 Coating Method For Nanocellulose Aerogel, Byron Fritch 2017 University of Northern Iowa

Tio2 Coating Method For Nanocellulose Aerogel, Byron Fritch

Research in the Capitol

Titanium dioxide has been shown to be an effective catalyst for splitting water into hydrogen and oxygen gas. By increasing the surface area of the titanium dioxide catalyst, the rate of water splitting may increase. A possible method to increase the splitting of water uses a high surface area composite material formed by coating nanocellulose aerogels with titanium dioxide. Different coating methods were studied using titanium isopropoxide as the titanium dioxide source to create such composites. It was found that the most consistent titanium dioxide coatings were formed during a 12 hour titanium isopropoxide vapor bath. Other coating methods collapsed ...


Enhancing High-Order-Harmonic Generation By Time Delays Between Two-Color, Few-Cycle Pulses, Dian Peng, Liang-Wen Pi, M. V. Frolov, Anthony F. Starace 2017 University of Nebraska - Lincoln

Enhancing High-Order-Harmonic Generation By Time Delays Between Two-Color, Few-Cycle Pulses, Dian Peng, Liang-Wen Pi, M. V. Frolov, Anthony F. Starace

Anthony F. Starace Publications

Use of time delays in high-order-harmonic generation (HHG) driven by intense two-color, few-cycle pulses is investigated in order to determine means of optimizing HHG intensities and plateau cutoff energies. Based upon numerical solutions of the time-dependent Schrõdinger equation for the H atom as well as analytical analyses, we show that introducing a time delay between the two-color, few-cycle pulses can result in an enhancement of the intensity of the HHG spectrum by an order of magnitude (or more) at the cost of a reduction in the HHG plateau cutoff energy. Results for both positive and negative time delays as well ...


Designing Novel Nanostructured Permanent Magnets, Ali Al Kadhim 2017 University of Nebraska at Omaha

Designing Novel Nanostructured Permanent Magnets, Ali Al Kadhim

Student Research and Creative Activity Fair

Rare earth element based alloys have been the source of high performance magnetic alloys, and have played a paramount role in the development of various technologies, including: memory devices (such as credit cards, random-access memory), sensors, and various biomedical applications. However, there is a tremendous need to replace rare earth metals with material with powerful magnetic properties. Our group recently found CrTe-based materials that show very promising magnetic properties in nanostructured form. The magnetic modeling of such material in nanostructured form prior to their fabrication demonstrates their magnetic properties in bulk form. In this project, we investigate the behavior of ...


Improving Sers-Based Readout Strategy For Biomarker Detecting Immunoassays, Joseph Smolsky 2017 U.N.O. Physics Department

Improving Sers-Based Readout Strategy For Biomarker Detecting Immunoassays, Joseph Smolsky

Student Research and Creative Activity Fair

Detection and monitoring of disease biomarkers increases probability of successful disease treatment. Surface enhanced Raman scattering (SERS) has several advantages over conventional readout strategies utilized in detecting immunoassays. SERS provides a method for chemical characterization based on molecular vibrational spectra. Raman signals are typically weak and need to be enhanced. This can be done using plasmons in nanoparticles of noble metals, we use gold (Au). Molecules with known spectra, Raman reporter molecules (RRM), can be adsorbed to Au nanoparticles. This enhances the Raman signal of the RRM when illuminated by a laser of optimal wavelength. Adding antibodies to nanoparticles modified ...


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson 2017 Marshall University

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Thomas E. Wilson

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Phonon Interference In Crystalline And Amorphous Confined Nanoscopic Films, Zhi Liang, Thomas E. Wilson, Pawel Keblinski 2017 Marshall University

Phonon Interference In Crystalline And Amorphous Confined Nanoscopic Films, Zhi Liang, Thomas E. Wilson, Pawel Keblinski

Physics Faculty Research

Using molecular dynamics phonon wave packet simulations, we study phonon transmission across hexagonal (h)-BN and amorphous silica (a-SiO2) nanoscopic thin films sandwiched by two crystalline leads. Due to the phonon interference effect, the frequency-dependent phonon transmission coefficient in the case of the crystalline film (Si|h-BN|Al heterostructure) exhibits a strongly oscillatory behavior. In the case of the amorphous film (Si|a-SiO2|Al and Si|a-SiO2|Si heterostructures), in spite of structural disorder, the phonon transmission coefficient also exhibits oscillatory behavior at low frequencies (up to ∼1.2 THz), with a period of oscillation consistent ...


Theoretical Approach To Electroresistance In Ferroelectric Tunnel Junctions, Sou-Chi Chang, Azad Naeemi, Dmitri E. Nikonov, Alexei Gruverman 2017 Georgia Institute of Technology

Theoretical Approach To Electroresistance In Ferroelectric Tunnel Junctions, Sou-Chi Chang, Azad Naeemi, Dmitri E. Nikonov, Alexei Gruverman

Alexei Gruverman Publications

In this paper, a theoretical approach comprising the nonequilibrium Green’s function method for electronic transport and the Landau-Khalatnikov equation for electric polarization dynamics is presented to describe polarization-dependent tunneling electroresistance (TER) in ferroelectric tunnel junctions. Using appropriate contact, interface, and ferroelectric parameters, the measured current-voltage characteristic curves in both inorganic (Co/BaTiO3/La0.67Sr0.33MnO3) and organic (Au/PVDF/W) ferroelectric tunnel junctions can be well described by the proposed approach. Furthermore, under this theoretical framework, the controversy of opposite TER signs observed experimentally by different groups in Co/BaTiO3/La0 ...


Anomalous Photovoltaic Effect In Organic-Inorganic Hybrid Perovskite Solar Cells, Yongbo Yuan, Tao Li, Qi Wang, Jie Xing, Alexei Gruverman, Jinsong Huang 2017 University of Nebraska - Lincoln

Anomalous Photovoltaic Effect In Organic-Inorganic Hybrid Perovskite Solar Cells, Yongbo Yuan, Tao Li, Qi Wang, Jie Xing, Alexei Gruverman, Jinsong Huang

Alexei Gruverman Publications

Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows ...


Digital Commons powered by bepress