Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,892 Full-Text Articles 4,121 Authors 235,024 Downloads 132 Institutions

All Articles in Atomic, Molecular and Optical Physics

Faceted Search

1,892 full-text articles. Page 1 of 54.

Embedded-Atom-Method Modeling Of Alkali-Metal/Transition-Metal Interfaces, Jake D. Christensen 2020 Utah State University

Embedded-Atom-Method Modeling Of Alkali-Metal/Transition-Metal Interfaces, Jake D. Christensen

All Graduate Theses and Dissertations

Understanding the thermal properties of materials is essential to using those materials for technological advancement which can benefit civilization. For example, it has been proposed that essential components of tokamaks, devices which perform fusion, be made out of tungsten with a thin layer of lithium on the surface. To that end, this thesis seeks to calculate the thermal properties of a layer of alkali atoms, like lithium and sodium, on tungsten and molybdenum substrates. We use an Embedded Atom Method (EAM) model to perform our calculations. This type of model has been widely used to describe the interaction between atoms ...


H-Atom Ladder Operator Revisited, Carl W. David 2020 University of Connecticut

H-Atom Ladder Operator Revisited, Carl W. David

Chemistry Education Materials

An error laden note (Am. J. Phys., 34, 984,(1966)) concerning the ladder operator solution to the hydrogen atom electronic energy levels is corrected.


A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings 2020 University of Kentucky

A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated ...


Analyzing And Classifying Single Molecule Microscopy Data, Troy Buzynski, Ali Tabei 2020 University of Northern Iowa

Analyzing And Classifying Single Molecule Microscopy Data, Troy Buzynski, Ali Tabei

Summer Undergraduate Research Program (SURP)

No abstract provided.


Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani 2020 Center for High Technology Materials

Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers has evolved into a powerful technique for high-precision metrology. In this method a physical parameter to be measured imparts a phase shift onto a pulse circulating in the laser cavity. Inside a laser cavity, that phase shift becomes a frequency shift (phase shift/round-trip time) applied to the whole frequency comb created by this pulse as it exits the cavity at each round-trip. This frequency shift is measured by interfering this comb with a reference comb created by a reference pulse circulating in the same ...


Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr 2020 University of New Mexico

Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr

Optical Science and Engineering ETDs

Over the past decades, high-power fiber lasers and amplifiers have been extensively under research to achieve higher output powers. However, temperature rise in the core of fiber lasers and amplifiers has been a big issue in power-scaling. Radiation-balancing is a viable technique introduced for effective heat mitigation in lasers and amplifiers by S. Bowman in 1995. Radiation-balancing relies on solid-state laser cooling as a self-cooling mechanism to mitigate the generated heat in lasers and amplifiers. To implement the mentioned idea in fiber lasers and amplifiers, a set of issues should be scrutinized; (i) the amenability of silica glass (as the ...


Quantum Interference In Monocyclic Molecules: A Novel And Straightforward Phase Wave Model, Zainelabideen Yousif Mijbil 2020 Al-Qasim Green University

Quantum Interference In Monocyclic Molecules: A Novel And Straightforward Phase Wave Model, Zainelabideen Yousif Mijbil

Karbala International Journal of Modern Science

We have proposed by far the simplest model, so-called phase wave model (PWM), to predict quantum interference states in monocyclic molecules. Meanwhile, transmission coefficient calculations were also performed using Green’s function method incorporated with Hückel (Tight Binding) approximation. An impressive agreement has been obtained between the results of the phase wave model and the ones from transmission coefficient calculations for the chosen model systems, namely benzene, cycloheptatriene, cyclooctatetraene, and [10]annulene. PWM represents the phase of wave functions of the incoming electrons by a wave and associates a single wavelength of the phase with five atoms/sites. Hence, the ...


Quantum Random Walk Search And Grover's Algorithm - An Introduction And Neutral-Atom Approach, Anna Maria Houk 2020 California Polytechnic State University, San Luis Obispo

Quantum Random Walk Search And Grover's Algorithm - An Introduction And Neutral-Atom Approach, Anna Maria Houk

Physics

In the sub-field of quantum algorithms, physicists and computer scientist take classical computing algorithms and principles and see if there is a more efficient or faster approach implementable on a quantum computer, i.e. a ”quantum advantage”. We take random walks, a widely applicable group of classical algorithms, and move them into the quantum computing paradigm. Additionally, an introduction to a popular quantum search algorithm called Grover’s search is included to guide the reader to the development of a quantum search algorithm using quantum random walks. To close the gap between algorithm and hardware, we will look at using ...


Generating Entanglement With The Dynamical Lamb Effect, Mirko Amico 2020 The Graduate Center, City University of New York

Generating Entanglement With The Dynamical Lamb Effect, Mirko Amico

Dissertations, Theses, and Capstone Projects

According to quantum field theory, the vacuum is filled with virtual particles which can be turned into real ones under the influence of external perturbations. Phenomena of this kind are commonly referred to as quantum vacuum phenomena. Several quantum vacuum phenomena related to the peculiar nature of the quantum vacuum have been predicted, some of which, such as the Lamb shift and the Casimir effect, have been experimentally found. Other examples of quantum vacuum phenomena include the Unruh effect, the dynamical Casimir effect and the dynamical Lamb effect. The dynamical Lamb effect was first predicted by considering the situation of ...


Density Functional Theory Calculations Of Al Doped Hafnia For Different Crystal Symmetry Configurations, Joshua Steier 2020 Seton Hall University

Density Functional Theory Calculations Of Al Doped Hafnia For Different Crystal Symmetry Configurations, Joshua Steier

Seton Hall University Dissertations and Theses (ETDs)

Dogan et al.[1], investigated the causes of ferroelectricity in doped hafnia using ab initio methods. Similarly, we investigated the stability of Al doped hafnia using quantum mechanical methods.

There are many different phases of Hafnia: monoclinic, tetragonal, cubic and orthorhombic. Starting with the monoclinic phase of Hafnia, Hafnia undergoes phase transitions which result in different space groups. The temperature at which the tetragonal phase is induced is 2000 K and cubic phase is induced at 2900 K[1]. Different dielectric constants vary from phase to phase. The average dielectric constants are highest for the cubic and tetragonal phases. In ...


Coherent Captain Mills: The Search For Sterile Neutrinos, Ashley Elliott, Jeramy Gordon, Jonah Greenwood, Rachel Lake, Ryder Moreno, Emily Strawn, Kate Walker 2020 Embry-Riddle Aeronautical University

Coherent Captain Mills: The Search For Sterile Neutrinos, Ashley Elliott, Jeramy Gordon, Jonah Greenwood, Rachel Lake, Ryder Moreno, Emily Strawn, Kate Walker

Discovery Day - Prescott

The observation of neutrino oscillations confirms that the active neutrinos (νe, νμ, ντ) are comprised of three mass eigenstates with Δm2 values between 10-3 to 10-5 eV2 . However, a persistent phenomenon has been observed at LSND, MiniBooNE and other shortbaseline experiments (SBE) where Δm2 ~ 1eV2 and is not compatible with the current mixing between mass eigenstates. However, a 4th neutrino, a sterile neutrino (νs) that doesn’t participate in weak interactions could explain the phenomena observed as SBE’s. An experiment has been constructed at TA-53 at Los Alamos National Laboratory to investigate this large Δm2 ~ 1eV2 and determine conclusively ...


Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr. 2020 University of Mississippi

Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr.

Honors Theses

In this project, the vibrational characteristics/vibrational modes are explored via Raman Spectroscopy for thiolated-gold nanoparticles. This class of compounds is also known as gold nanoparticles (AuNPs). They remain of great interest in research areas such as catalysis, gold dependent nanoelectronics, drug delivery, and sensing, due to their unique size-dependent optical, chiroptical, and electronic properties. Vibrational spectroscopy of thiolated gold nanoparticles are oftentimes considered nontrivial as the compounds strongly absorb light in the visible region of the electromagnetic spectrum, are generally considered weak scatterers, and give off large amounts of fluorescence. This combined with their black appearance, susceptibility to localized ...


Physics 516: Electromagnetic Phenomena (Spring 2020), Philip C. Nelson 2020 University of Pennsylvania

Physics 516: Electromagnetic Phenomena (Spring 2020), Philip C. Nelson

Department of Physics Papers

These course notes are made publicly available in the hope that they will be useful. All reports of errata will be gratefully received. I will also be glad to hear from anyone who reads them, whether or not you find errors: pcn@upenn.edu.


Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn E. Merrill, Bingjie Zhang, Jerry LaRue 2020 Chapman University

Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn E. Merrill, Bingjie Zhang, Jerry Larue

Student Scholar Symposium Abstracts and Posters

Catalysis provides pathways for efficient and selective chemical reactions through the lowering of energy barriers for desired products. Gold nanoparticles (AuNP) show excellent promise as plasmonic catalysts. Localized surface plasmon resonances are oscillations of the electron bath at the surface of a nanoparticle that generate energetically intense electric fields and rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize strongly bound oxygen atoms through occupation of accessible anti-bonding orbitals. Tuning the anti-bonding orbitals to make them accessible for occupancy will be achieved by coating the AuNP in a thin layer of another transition metal, such ...


A Study Of Optical Nonlinearities At The Single-Photon Level For Quantum Logic, Balakrishnan Viswanathan 2020 University of Arkansas, Fayetteville

A Study Of Optical Nonlinearities At The Single-Photon Level For Quantum Logic, Balakrishnan Viswanathan

Theses and Dissertations

In this dissertation, we shall focus on theoretically studying quantum nonlinear optical schemes to construct a conditional phase gate at the single-photon level. With an aim to develop analytical models, we shall carry out a rigorous quantized multimode field analysis of some of these schemes involving only the interacting field operators. More specifically, we shall first study the three-wave mixing process involving two single-photons in a second-order nonlinear medium (x(2)) under two different cases viz. when the photons are traveling with equal velocities and when they are traveling with different velocities, and explore the possibility of using them for ...


Four-Wave Mixing With Orbital Angular Momentum Transfer, Hana Warner 2020 William & Mary

Four-Wave Mixing With Orbital Angular Momentum Transfer, Hana Warner

Undergraduate Honors Theses

We explore the conservation of orbital angular momentum (OAM) in the four-wave mixing (FWM) process in hot rubidium vapor. Since most modern communication systems send data in pulses corresponding to bits, we can use OAM to encode more information in each pulse by assigning structure to each signal. Furthermore, because FWM can be used to generate entangled photon pairs, we can use this process to bring enhanced signal security. We experimentally studied FWM with a wide range of Laguerre-Gaussian modes and their superpositions and observed OAM transfer from the probe field to a generated Stokes field. By studying the output ...


Development And Upgrade Of A Laser Cooling And Trapping System Of Ultracold Potassium Atoms, Bennett Atwater 2020 William & Mary

Development And Upgrade Of A Laser Cooling And Trapping System Of Ultracold Potassium Atoms, Bennett Atwater

Undergraduate Honors Theses

This thesis describes work to improve the apparatus that cools and loads potassium atoms onto the atom chip. This work consists of two main thrusts: a laser trap translator to help cool and load atoms onto the atom chip and a temperature stabilization system for the lasers that are used to laser cool potassium atoms. The current iteration of the beam translator has the ability to vertically translate a beam ±4.5 mm relative to its incident height. The translator has been shown to not alter the spatial profile of the beam through interference or obstruction. The translator’s rotation ...


Conservation Of Orbital Angular Momentum In Degenerate Four-Wave Mixing Via Rubidium Vapor, Kangning Yang 2020 William & Mary

Conservation Of Orbital Angular Momentum In Degenerate Four-Wave Mixing Via Rubidium Vapor, Kangning Yang

Undergraduate Honors Theses

We present an experimental platform which can generate quantum-correlated beams with Orbital Angular Momentum (OAM) via degenerate Four-Wave Mixing (FWM) in Rubidium vapor. We further investigated the conservation of OAM before and after FWM by performing LG mode decomposition using interferometer. To compare our experimental result with theoretical prediction, we simulated a simplified version of our set up. Moreover, we used this toy model to study the conservation of radial and angular intensity profile through changing parameters limited by our set up. In general, we found that FWM preserves most information consisted in OAM, but has a rather loose control ...


Studies In Seop Hyperpolarized 3he: Measuring Ko And The Spatial Dependence Of Alkali Polarization, Michael Cairo 2020 William & Mary

Studies In Seop Hyperpolarized 3he: Measuring Ko And The Spatial Dependence Of Alkali Polarization, Michael Cairo

Undergraduate Honors Theses

3He is an isotope of helium whose nucleus is composed of two protons and one neutron. The proportion of atoms whose spins are pointed along the same direction in a volume of 3He gas is known as the polarization. This study entails two experiments in the field of 3He polarimetry concerned with measuring the polarization of a 3He cell and reducing the uncertainty associated with it. 3He cells are full of gaseous 3He, along with alkali metal vapors, K and Rb in our case. The polarization of a 3He cell can be measured ...


An Overview Of Lasers And Their Applications, Luis Cristian Giovanni Guerrero 2020 California Polytechnic State University, San Luis Obispo

An Overview Of Lasers And Their Applications, Luis Cristian Giovanni Guerrero

Physics

This paper is an overview of lasers and their applications. The fundamentals of laser operation are covered as well as the various applications of advanced laser systems. The primary focus is to highlight some of the technological advancements made possible by lasers in the last half-century.


Digital Commons powered by bepress