Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,688 Full-Text Articles 3,005 Authors 178,679 Downloads 113 Institutions

All Articles in Atomic, Molecular and Optical Physics

Faceted Search

1,688 full-text articles. Page 1 of 50.

High-Performance Self-Powered Uv Detector Based On Sno2-Tio2 Nanomace Arrays, Duo Chen, Lin Wei, Lingpan Meng, Yanxue Chen, Yufeng Tian, Shishen Yan, Liangmo Mei, Jun Jiao 2018 School of Physics and State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

High-Performance Self-Powered Uv Detector Based On Sno2-Tio2 Nanomace Arrays, Duo Chen, Lin Wei, Lingpan Meng, Yanxue Chen, Yufeng Tian, Shishen Yan, Liangmo Mei, Jun Jiao

Physics Faculty Publications and Presentations

Photoelectrochemical cell-typed self-powered UV detectors have attracted intensive research interest due to their low cost, simple fabrication process, and fast response. In this paper, SnO2-TiO2 nanomace arrays composed of SnO2 nanotube trunk and TiO2 nanobranches were prepared using soft chemical methods, and an environment-friendly self-powered UV photodetector using this nanostructure as the photoanode was assembled. Due to the synergistic effect of greatly accelerated electron-hole separation, enhanced surface area, and reduced charge recombination provided by SnO2-TiO2 nanomace array, the nanostructured detector displays an excellent performance over that based on bare SnO2 arrays. The impact of the growing time of TiO2 branches ...


The Development Of A Diffraction Grating For An Element Of Directional Output Of Radiation From Microlasers, Evgenii Levdik 2018 Lyceum Physical Technical High School

The Development Of A Diffraction Grating For An Element Of Directional Output Of Radiation From Microlasers, Evgenii Levdik

The International Student Science Fair 2018

In nanophotonics, axisymmetric microlasers became widespread. As they have lots of advantages, they can be used in many scientific and industrial areas, such as microchips for data transfer in order to make electrical circuits smaller. But there is a drawback: they radiate in all directions in the plane of the substrate. This is why elements of directional output of radiation are being developed. A necessary part of such element is the diffraction grating applied to the surface of the waveguide. Such gratings are already being created, but with very expensive methods, for example, electronic lithography. We present a technique for ...


Control Of Harmonic Generation By The Time Delay Between Two-Color, Bicircular Few-Cycle Mid-Ir Laser Pulses, M. V. Frolov, N. L. Manakov, A. A. Minina, N. V. Vvedenskii, A. A. Silaev, M. Yu. Ivanov, Anthony F. Starace 2018 Voronezh State University, Russia

Control Of Harmonic Generation By The Time Delay Between Two-Color, Bicircular Few-Cycle Mid-Ir Laser Pulses, M. V. Frolov, N. L. Manakov, A. A. Minina, N. V. Vvedenskii, A. A. Silaev, M. Yu. Ivanov, Anthony F. Starace

Anthony F. Starace Publications

We study control of high-order harmonic generation (HHG) driven by time-delayed, few-cycle ω and 2ω counterrotating mid-IR pulses. Our numerical and analytical study shows that the time delay between the two-color pulses allows control of the harmonic positions, both those allowed by angular momentum conservation and those seemingly forbidden by it. Moreover, the helicity of any particular harmonic is tunable from left to right circular without changing the driving pulse helicity. The highest HHG yield occurs for a time delay comparable to the fundamental period T = 2π/ω.


The Development Of A Diffraction Grating For An Element Of Directional Output Of Radiation From Microlasers, Evgenii Levdik 2018 Lyceum Physical Technical High School

The Development Of A Diffraction Grating For An Element Of Directional Output Of Radiation From Microlasers, Evgenii Levdik

The International Student Science Fair 2018

In nanophotonics, axisymmetric microlasers became widespread. As they have lots of advantages, they can be used in many scientific and industrial areas, such as microchips for data transfer in order to make electrical circuits smaller. But there is a drawback: they radiate in all directions in the plane of the substrate. This is why elements of directional output of radiation are being developed. A necessary part of such element is the diffraction grating applied to the surface of the waveguide. Such gratings are already being created, but with very expensive methods, for example, electronic lithography. We present a technique for ...


Probing Magnetism In 2d Van Der Waals Crystalline Insulators Via Electron Tunneling, D. R. Klein, D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, Paul C. Canfield, J. Fernández-Rossier, P. Jarillo-Herrero 2018 Massachusetts Institute of Technology

Probing Magnetism In 2d Van Der Waals Crystalline Insulators Via Electron Tunneling, D. R. Klein, D. Macneill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, Paul C. Canfield, J. Fernández-Rossier, P. Jarillo-Herrero

Ames Laboratory Accepted Manuscripts

Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra ...


Electron- And Positron-Impact Ionization Of Inert Gases, R. I. Campeanu, H. R. J. Walters, Colm T. Whelan 2018 Old Dominion University

Electron- And Positron-Impact Ionization Of Inert Gases, R. I. Campeanu, H. R. J. Walters, Colm T. Whelan

Physics Faculty Publications

Triple-differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions which cannot be separately detected in an experiment with a single projectile. A comparison is presented between theory and the recent experiments of [Gavin, deLucio, and DuBois, Phys. Rev. A95, 062703 (2017)] for e± and contrasted with the results from ...


Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender 2018 Fordham University

Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender

Student Theses 2015-Present

This paper aims to shed light on the dissonance caused by the superimposition of Dominant Human Systems on Natural Systems. I highlight the synthetic nature of Dominant Human Systems as egoic and linguistic phenomenon manufactured by a mere portion of the human population, which renders them inherently oppressive unto peoples and landscapes whose wisdom were barred from the design process. In pursuing a radical pragmatic approach to mending the simultaneous oppression and destruction of the human being and the earth, I highlight the necessity of minimizing entropic chaos caused by excess energy expenditure, an essential feature of systems that aim ...


A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise 2018 Southern Methodist University

A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise

Mechanical Engineering Research Theses and Dissertations

In this thesis, a laser velocity sensor concept based on optical microresonators is presented and the application to spacecraft atmospheric entry is explored. The concept is based on the measurement of Doppler shift of back-scattered laser light. Specifically, the Doppler shift is detected by observing the whispering gallery optical modes (WGM) of a dielectric microresonator excited by the back scattered light from particulates and gas molecules. The microresonator replaces the typical Fabry-Perot interferometer and CCD camera system, thereby significantly reducing the size and weight of the overall detection system. This thesis presents proof-of-concept results for this measurement approach. The Doppler ...


Enhancing High-Order Harmonic Generation By Sculpting Waveforms With Chirp, Dian Peng, M. V. Frolov, Liang-Wen Pi, Anthony F. Starace 2018 University of Nebraska - Lincoln

Enhancing High-Order Harmonic Generation By Sculpting Waveforms With Chirp, Dian Peng, M. V. Frolov, Liang-Wen Pi, Anthony F. Starace

Anthony F. Starace Publications

We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser field waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG cutoff energies. Specifically, we consider driving laser field waveforms composed of two ultrashort pulses having different carrier frequencies in each of which a linear chirp is introduced. Two pairs of carrier frequencies of the component pulses are considered: (ω, 2ω) and (ω, 3ω). Our results show how changing the signs of the chirps in each of the two component pulses leads to drastic changes in the HHG spectra. Our theoretical ...


Two-Mode Squeezing And Conservation Of Optical Angular Momentum Via Four-Wave Mixing In Rubidium, Nathan Super 2018 College of William and Mary

Two-Mode Squeezing And Conservation Of Optical Angular Momentum Via Four-Wave Mixing In Rubidium, Nathan Super

Undergraduate Honors Theses

The goal of the project is to produce a pair of intensity-squeezed light fields using Four-Wave Mixing (FWM) in hot Rubidium vapor. In this process, interaction of atoms with near-resonant strong control optical field results in strong amplification of a weak probe optical field and in generation of a quantum correlated conjugate Stokes optical field. In order to establish the quantum correlation between the Stokes and probe fields, we measured the differential intensity noise between the Stokes and probe fields. If the noise falls below the quantum noise limit, then two-mode intensity squeezing has been achieved, as a first step ...


Experimental Progress Toward Eit In An Atomic Beam, Sean E. Tilton 2018 Lake Forest College

Experimental Progress Toward Eit In An Atomic Beam, Sean E. Tilton

Senior Theses

EIT (Electromagnetically Induced Transparency) is a quantum optics phenomenon that occurs under specific conditions during a photon-atom interaction. Under such conditions, slow-light may be produced as a by-product of this effect. The purpose of this research is to adapt previous work on rubidium atoms in vapor cells to lithium atoms in a thermal beam. By doing so, the hope is to better understand the limitations of slow light and produce better results by eliminating atomic collisions within the system.


A Sixteen-Channel Nanoammeter Current Measurement System For Profiling Charged Particle Beams, Zachery St. Pierre 2018 College of the Holy Cross

A Sixteen-Channel Nanoammeter Current Measurement System For Profiling Charged Particle Beams, Zachery St. Pierre

Physics Student Scholarship

No abstract provided.


Physics 516: Electromagnetic Phenomena (Spring 2018), Philip C. Nelson 2018 University of Pennsylvania

Physics 516: Electromagnetic Phenomena (Spring 2018), Philip C. Nelson

Department of Physics Papers

These course notes are made publicly available in the hope that they will be useful. All reports of errata will be gratefully received. I will also be glad to hear from anyone who reads them, whether or not you find errors: pcn@upenn.edu.


Spatially-Resolved Study Of The Meissner Effect In Superconductors Using Nv-Centers-In-Diamond Optical Magnetometry, Naufer Nusran, Kamal R. Joshi, Kyuil Cho, Makariy A. Tanatar, William R. Meier, Sergey Bud’ko, Paul C. Canfield, Yong Liu, Thomas A. Lograsso, Ruslan Prozorov 2018 Iowa State University and Ames Laboratory

Spatially-Resolved Study Of The Meissner Effect In Superconductors Using Nv-Centers-In-Diamond Optical Magnetometry, Naufer Nusran, Kamal R. Joshi, Kyuil Cho, Makariy A. Tanatar, William R. Meier, Sergey Bud’Ko, Paul C. Canfield, Yong Liu, Thomas A. Lograsso, Ruslan Prozorov

Ames Laboratory Accepted Manuscripts

Non-invasive magnetic field sensing using optically-detected magnetic resonance of nitrogen-vacancy centers in diamond was used to study spatial distribution of the magnetic induction upon penetration and expulsion of weak magnetic fields in several representative superconductors. Vector magnetic fields were measured on the surface of conventional, elemental Pb and Nb, and compound LuNi2B2C and unconventional iron-based superconductors Ba1−x KxFe2As2 (x=0.34 optimal hole doping), Ba(Fe1−x Cox)2As2 (x=0.07 optimal electron doping), and stoichiometric CaKFe4As4, using variable-temperature confocal system with diffraction-limited spatial resolution. Magnetic induction profiles across the crystal edges were measured in zero-field-cooled and field-cooled ...


Quasiprobability Behind The Out-Of-Time-Ordered Correlator, Nicole Yunger Halpern, Brian Swingle, Justin Dressel 2018 California Institute of Technology

Quasiprobability Behind The Out-Of-Time-Ordered Correlator, Nicole Yunger Halpern, Brian Swingle, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

Two topics, evolving rapidly in separate fields, were combined recently: the out-of-time-ordered correlator (OTOC) signals quantum-information scrambling in many-body systems. The Kirkwood-Dirac (KD) quasiprobability represents operators in quantum optics. The OTOC was shown to equal a moment of a summed quasiprobability [Yunger Halpern, Phys. Rev. A 95, 012120 (2017)]. That quasiprobability, we argue, is an extension of the KD distribution. We explore the quasiprobability's structure from experimental, numerical, and theoretical perspectives. First, we simplify and analyze Yunger Halpern's weak-measurement and interference protocols for measuring the OTOC and its quasiprobability. We decrease, exponentially in system size, the number of ...


An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano de Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter 2018 The University of New Mexico, Sandia National Laboratories

An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter

Nuclear Engineering ETDs

Modern ultraviolet (UV) cameras, when combined with UV-transmitting lenses/filter arrangements, can be used to detect radiation dose in air. Ionizing radiation excites nitrogen molecules in ambient air, the resulting decay includes weak emission of ultraviolet photons. Previous work has proven this phenomenon is detectable using highly-sensitive electronically cooled cameras traditionally used in astronomy for low-background imaging. While the ability to detect the presence of radiation (i.e. qualitative measurement) has been demonstrated at Sandia National Laboratories, there are several challenges in correlating images to known dose-fields (quantitative measurement). These challenges include: a low signal to background ratio, interferences due ...


Characterization Of Magnetic Thin Films Using The Magneto Optic Kerr Effect, Nicholas J. Savino 2018 Lynchburg College

Characterization Of Magnetic Thin Films Using The Magneto Optic Kerr Effect, Nicholas J. Savino

Student Scholar Showcase

Understanding magnetic properties of materials allows for advances in applications such as data storage. The Magneto-Optic Kerr Effect (MOKE) displays the reflective response a magnetic material has to a magnetic field. When polarized light reflects off of a magnetic material, the polarization orientation can change. The application of an external magnetic field can affect how much this polarization changes in a non-linear manner. Hysteresis loops are created when examining the relationship between intensity of the reflected light to the applied magnetic field provide information about magnetic properties of that material, such as the coercive field and field retention. Preliminary measurements ...


Effect Of Fe Substitution On Structural, Magnetic And Electron-Transport Properties Of Half-Metallic Co2tisi, Juliana Herran 2018 University of Northern Iowa

Effect Of Fe Substitution On Structural, Magnetic And Electron-Transport Properties Of Half-Metallic Co2tisi, Juliana Herran

Research in the Capitol

In recent years, research on magnetic materials has been one of the most technologically appealing developments in materials science. Among other applications, magnetic materials are essential components of data storage and information processing in computer hardware elements, such as hard drives and random access memories. Here, we present a theoretical study of structural, magnetic and electronic properties of ferrimagnetic Co2Ti1−xFexSi (x = 0, 0.25, 0.5), using density functional calculations. We show that the magnetic moment of Co2Ti1−xFexSi increases when Ti is substituted with Fe, consistent ...


External Cavity Diode Laser For Ultra-Cold Atom Experiments, Benjamin Halkowski 2018 College of William and Mary

External Cavity Diode Laser For Ultra-Cold Atom Experiments, Benjamin Halkowski

Undergraduate Honors Theses

This thesis describes the design, construction and characterization of an external cavity diode laser (ECDL) within the context of AMO research – specifically, ultracold rubidium experiments. The main benefit over other forms of laser light is the ECDL’s low cost and narrow linewidth. Having a more narrow linewidth allows us to affect specific electron states, such as for laser cooling, more precisely than broader alternatives.

We find that building such a laser in house is feasible with scan range up to 4 GHz. We also note that attention to external noise, through mechanical vibrations but more importantly through temperature drifts ...


Optimization Of Magnetic Chicane For Maximum Electron Beam Compression, Nathan W. Ray, Vida-Michelle Nixon, Matthias Fuchs 2018 University of Nebraska-Lincoln

Optimization Of Magnetic Chicane For Maximum Electron Beam Compression, Nathan W. Ray, Vida-Michelle Nixon, Matthias Fuchs

UCARE Research Products

Research concerned with optimizing a negatively chirped, relativistic, short electron beam using General Particle Tracer (GPT). The GPT simulations have the ability to include realistic beam effects such as space charge, fringe fields and emittance. A series of electron beam energy spreads were simulated through several different iterations of dipole magnets and, utilizing GPT's optimization ability, the most consistent set of parameters was selected and displayed on the poster. With our presented iteration of parameters we noted a 89.5% compression of the electron beam along the propagating axis.


Digital Commons powered by bepress