Open Access. Powered by Scholars. Published by Universities.®

Other Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

898 Full-Text Articles 1241 Authors 216435 Downloads 71 Institutions

All Articles in Other Physics

Faceted Search

898 full-text articles. Page 1 of 31.

Modification Of The G-Phonon Mode Of Graphene By Nitrogen Doping, Pavel V. Lukashev, Liuyan Zhao, Tula R. Paudel, Theanne Schiros, Noah Hurley, Evgeny Y. Tsymbal, Aron Pinczuk, Abhay Pasupathy, Rui He 2017 University of Nothern Iowa

Modification Of The G-Phonon Mode Of Graphene By Nitrogen Doping, Pavel V. Lukashev, Liuyan Zhao, Tula R. Paudel, Theanne Schiros, Noah Hurley, Evgeny Y. Tsymbal, Aron Pinczuk, Abhay Pasupathy, Rui He

Pavel Lukashev

The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. We ...


Modification Of The G-Phonon Mode Of Graphene By Nitrogen Doping, Pavel V. Lukashev, Liuyan Zhao, Tula R. Paudel, Theanne Schiros, Noah Hurley, Evgeny Y. Tsymbal, Aron Pinczuk, Abhay Pasupathy, Rui He 2017 University of Nothern Iowa

Modification Of The G-Phonon Mode Of Graphene By Nitrogen Doping, Pavel V. Lukashev, Liuyan Zhao, Tula R. Paudel, Theanne Schiros, Noah Hurley, Evgeny Y. Tsymbal, Aron Pinczuk, Abhay Pasupathy, Rui He

Rui He

The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. We ...


Characterization Of Hydrophobic Interactions Of Polymers With Water And Phospholipid Membranes Using Molecular Dynamics Simulations, Mihaela Drenscko 2017 The Graduate Center, City University of New York

Characterization Of Hydrophobic Interactions Of Polymers With Water And Phospholipid Membranes Using Molecular Dynamics Simulations, Mihaela Drenscko

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid ...


Mathematical Description And Mechanistic Reasoning: A Pathway Toward Stem Integration, Paul J. Weinberg 2017 Oakland University

Mathematical Description And Mechanistic Reasoning: A Pathway Toward Stem Integration, Paul J. Weinberg

Journal of Pre-College Engineering Education Research (J-PEER)

Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith’s (2007) characterization of mathematical description of scientific phenomena as ‘‘bootstrapping,’’ where negotiating the relationship between target phenomena and represented relations is fundamental to learning. In addition, the development of mathematical representation presents a viable pathway towards STEM integration. In this study, participants responded to an assessment of mechanistic reasoning while cognitive ...


One-Step Laser-Induced Hydrogen Generation From Coal Powders In Water, Dovletgeldi Seyitliyev 2017 Western Kentucky University

One-Step Laser-Induced Hydrogen Generation From Coal Powders In Water, Dovletgeldi Seyitliyev

Masters Theses & Specialist Projects

This study presents a simple way of obtaining hydrogen gas (H2) from various ranks of coal, coke, and graphite using nanosecond laser pulses. Powder samples of coal and graphite with and without water were irradiated with 1064 nm and 532 nm pulses from an Nd: YAG laser for 45 minutes under air and argon atmospheres. It was observed that 532 nm laser pulses were more effective than 1064 nm pulses in gas generation and both were nonlinearly correlated with respect to the laser energy density. Mainly hydrogen (H2) and carbon monoxide (CO) were observed. The H2 to CO ratio shows ...


Enhancement Of The Superconducting Gap By Nesting In Cakfe4as4: A New High Temperature Superconductor, Daixiang Mou, Tai Kong, William R. Meier, Felix Lochner, Lin-Lin Wang, Qisheng Lin, Yun Wu, S. L. Bud’ko, Ilya Eremin, Duane D. Johnson, Paul C. Canfield, Adam Kaminski 2017 Iowa State University

Enhancement Of The Superconducting Gap By Nesting In Cakfe4as4: A New High Temperature Superconductor, Daixiang Mou, Tai Kong, William R. Meier, Felix Lochner, Lin-Lin Wang, Qisheng Lin, Yun Wu, S. L. Bud’Ko, Ilya Eremin, Duane D. Johnson, Paul C. Canfield, Adam Kaminski

Paul C. Canfield

We use high resolution angle resolved photoemission spectroscopy and density functional theory with measured crystal structure parameters to study the electronic properties of CaKFe4As4. In contrast to the related CaFe2As2 compounds, CaKFe4As4 has a high Tc of 35 K at stochiometric composition. This presents a unique opportunity to study the properties of high temperature superconductivity in the iron arsenides in the absence of doping or substitution. The Fermi surface consists of several hole and electron pockets that have a range of diameters. We find that the values of the superconducting gap are nearly isotropic (within the explored portions of the ...


On-Sight Shifting At The Cryogenic Underground Observatory For Rare Events, Aaron C. Wong 2017 California Polytechnic State University, San Luis Obispo

On-Sight Shifting At The Cryogenic Underground Observatory For Rare Events, Aaron C. Wong

Physics

During the summer of 2016, four Cal Poly students traveled to Assergi, Italy to contribute to the CUORE collaboration which is in search of a rare process called neutrinoless double beta decay. If detected, neutrinoless double beta decay will make break throughs in particle and nuclear physics, and will be the first observation of lepton number violation. The Cal Poly students provided on-sight shifting support during the installation phase of the project. This is a breakdown of the physics behind CUORE and Cal Poly's contribution.


Investigation Of Peltier Devices For Refrigeration, Evan C. Drake 2017 California Polytechnic State University, San Luis Obispo

Investigation Of Peltier Devices For Refrigeration, Evan C. Drake

Physics

The purpose of our project was to characterize Peltier devices and determine if they were good candidates toward inexpensive off-grid solar powered refrigeration in poor countries. We measured the rate of cooling with a constant temperature thermal sink for different current inputs. Through numerous experiments we calculated the coefficient of performance for two different thermoelectric coolers (TECs) through a range of temperature differentials. In addition, we found the lowest temperature these Peltier chips could reach so that we could test the accuracy of the information provided by the manufacturers spec sheets. Overall the data gathered through our research is compelling ...


Determining The Grain Size Of Polycrystalline Diamond For High Energy Density Experiments, Lauren Barmore 2017 Northwestern University

Determining The Grain Size Of Polycrystalline Diamond For High Energy Density Experiments, Lauren Barmore

Undergraduate Research and Arts Exposition

The High Energy Density Sciences group at SLAC National Accelerator Laboratory uses shock waves produced by the Linac Coherent Light Source to dynamically compress polycrystalline diamond samples. Compressing these polycrystalline samples allows us to use x-ray diffraction to study the changes to the structure as it experiences high pressure conditions. Polycrystalline diamond is valuable to study because it can be formed into ablator capsules for use in inertial confinement fusion reactions. As a result of the shock compression, the polycrystalline diamond samples undergo dynamic compression, a combination of stress and strain. To understand how dynamic compression takes place in a ...


Gravitational Wave Behavior At A Vacuum-Matter Interface, Jake Litterer 2017 University of Puget Sound

Gravitational Wave Behavior At A Vacuum-Matter Interface, Jake Litterer

Honors Program Theses

In classical electrodynamics, boundary conditions of the E and B fields are derived from Maxwell's equations, which are used to derive the Fresnel equations describing the behavior of a wave at an interface between media with given indices of refraction. Though electrodynamics and gravity are in some instances strikingly analogous, boundary conditions in general relativity are somewhat more opaque. We will see that while while continuity of the metric must be true in general, discontinuity of the extrinsic curvature of spacetime, while allowed by the Einstein field equations, results in a singularity in the energy-momentum tensor. This singularity is ...


Accuracy And Stability Of Integration Methods For Neutrino Transport In Core Collapse Supernovae, Kyle A. Gregory 2017 kgrego12

Accuracy And Stability Of Integration Methods For Neutrino Transport In Core Collapse Supernovae, Kyle A. Gregory

University of Tennessee Honors Thesis Projects

No abstract provided.


Characterizing The Growth Rate Of A Corrosion Layer On Stainless Steel In A Molten Salt Environment, Calvin E. Hensler 2017 College of William and Mary

Characterizing The Growth Rate Of A Corrosion Layer On Stainless Steel In A Molten Salt Environment, Calvin E. Hensler

Undergraduate Honors Theses

Solar central receiver power plants are an up-and-coming clean energy option which make use of concentrated solar power. In order to function, these systems must be able to store molten “solar salt” (40% potassium nitrate, 60% sodium nitrate), which has proven to be highly corrosive to stainless steel. Slowing the corrosion rate of stainless steel when exposed to molten salt would be a significant step in the feasibility and cost-effectiveness of solar central receiver power plants, but in order to test the effectiveness of various treatments, we first need a method of characterizing the thickness of the corrosion layer. We ...


Optimization Of The Nedm Experiment, Patrick Rogers 2017 University of Tennessee, Knoxville

Optimization Of The Nedm Experiment, Patrick Rogers

Masters Theses

The Neutron Electric Dipole Moment (NEDM) experiment is an upcoming experiment at ORNL to measure the size of an electric dipole moment inside of the neutron. This is being done to probe CP asymmetries that could give rise to a matter dominated universe. The experiment will utilize a nuclear reaction that outputs scintillation light in a manner that depends on the alignment of the spins of the reactant particles. This light will be detected and used to measure the NEDM. The amount of light collected for measurement will impact the accuracy of the results; the more photons collected the better ...


Methods For Improved Estimation Of Low Blood Velocities Using Vector Doppler Ultrasound, Bushra Hussain 2017 The University of Western Ontario

Methods For Improved Estimation Of Low Blood Velocities Using Vector Doppler Ultrasound, Bushra Hussain

Electronic Thesis and Dissertation Repository

Accurate estimation of low 3D blood velocities, such as near the wall in recirculation or disturbed flow regions, is important for accurate mapping of velocities to improve estimations of wall shear stress and turbulence, which are associated risk factors for vascular disease and stroke. Doppler ultrasound non-invasively measures blood-velocities but suffers from two major limitations addressed in this thesis. These are angle dependence of the measurements, which requires the knowledge of beam-to-flow angle, and the wall-filter. The high-pass wall filter that is applied to attenuate the high-intensity low-frequency signal from tissue and slowly moving vessel wall also attenuates any low ...


Cirrus Cloud Microphysics Over Darwin, Australia, Dorothea Ivanova, Matthew Johnson 2017 Embry-Riddle Aeronautical University

Cirrus Cloud Microphysics Over Darwin, Australia, Dorothea Ivanova, Matthew Johnson

Publications

Ice clouds, crucial to the understanding of both short - and long - term climate trends, are poorly represented in global climate models (GCMs). Cirrus clouds, one of the largest uncertainties in the global radiation budget, have been inadequately studied at low latitudes. Parameterizations exist for mid - latitude and tropical cirrus ( Ivanova et al. 2001; McFarquhar et al. 1997). Due to climate sensitivity in the GCM with respect to cloud input, without robust parameterizations of cirrus clouds, the GCM is inaccurate over most output fields, including radiative forcing, temperature, albedo, and heat flux (Yao and Del Genio 1999).

Studies of the microphysical ...


Stacking 2d Materials, Michael Hernandez, John C. Mann 2017 Pepperdine University

Stacking 2d Materials, Michael Hernandez, John C. Mann

Seaver College Research And Scholarly Achievement Symposium

Monolayer Transition Metal Dichalcogenides are atomically thin semi-conductors that are considered quasi 2D materials due to their extremely small thickness. It has been observed that atomically thin crystals exhibit different physical properties than their bulk counterparts due to quantum confinement effects. We are attempting discover new physical properties by developing a technique to stack two different monolayer crystals, MoS2 and MoSe2.


Measurement Of The Stochasticity Of Low-Latitude Geomagnetic Temporal Variations, Mark Anthony Reynolds, James A. Wanliss 2017 Embry-Riddle Aeronautical University - Daytona Beach

Measurement Of The Stochasticity Of Low-Latitude Geomagnetic Temporal Variations, Mark Anthony Reynolds, James A. Wanliss

M. Anthony Reynolds

Ground magnetometer measurements of total magnetic field strength from 6 stations at low latitudes were analyzed using power spectrum and Hurst range scaling techniques. The Hurst exponents for most of these time-series were near 0.5, which indicates stochasticity, with the highest latitude stations exhibiting some persistence with Hurst exponents greater than 0.6. Although no definite correlations are evident, the relative increase of the Hurst exponent with latitude suggests the possibility that the underlying dynamics of the magnetosphere change with latitude. This result may help quantify the dynamics of the inner magnetosphere itself without the direct presence of the ...


The Interactions Of Relationships, Interest, And Self-Efficacy In Undergraduate Physics, Remy Dou 2017 Florida International University

The Interactions Of Relationships, Interest, And Self-Efficacy In Undergraduate Physics, Remy Dou

FIU Electronic Theses and Dissertations

This collected papers dissertation explores students’ academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions ...


The Property Of Mass: An Interdisciplinary Metaphysical Investigation, Benjamin Hayworth 2017 University of Nebraska at Omaha

The Property Of Mass: An Interdisciplinary Metaphysical Investigation, Benjamin Hayworth

Student Research and Creative Activity Fair

The property of mass as used in the physical sciences is somewhat of a metaphysical conundrum. Not only has the definition of mass changed with various paradigm shifts in physics, but the powers belonging to the property have also varied. In my study, I begin by examining the historical context surrounding the term, including the changes to its definition. In doing so, it is revealed that various definitions of mass are used and circulated in general discussion, so a cogent criterion of identity is established by which each definition can be measured. After determining the distinctions between each mass term ...


Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield 2017 University of Nebraska-Lincoln

Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Surface Functionalization Technique • Femtosecond Laser Surface Processing (FLSP) • Utilize high power, femtosecond (10-15 s) laser pulses • Produce self-organized, multiscale surface micro/nanostructures • Diverse range of applicable substrates: semiconductors, metals, polymers, & composites

Why? • What are the different types of FLSP structures on Ti? • Physical evidence needed for FLSP formation models • Optimize FLSP of Ti for biomedical & other applications

How? • Obtain evidence of mound growth processes by examining underlying microstructure • Utilize dual beam Scanning Electron Microscope-Focused Ion Beam instrument to cross section surface structures & fabricate transmission electron microscopy samples


Digital Commons powered by bepress