Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,443 Full-Text Articles 3,505 Authors 544,217 Downloads 129 Institutions

All Articles in Optics

Faceted Search

2,443 full-text articles. Page 1 of 92.

Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge 2023 The Graduate Center, City University of New York

Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge

Dissertations, Theses, and Capstone Projects

Individual quantum systems in semiconductors are currently the most sought-after platform for applications in quantum science. Most notably, the nitrogen-vacancy (NV) center in diamond features a defect deep within the electronic bandgap, making it amenable for precise manipulation to help pave the way to perform fundamental quantum physics experimentation. The NV center also offers long coherence times and versatile spin-dependent fluorescent properties, making it an ideal candidate for a nanoscale magnetometer. Furthermore, multi-color excitation offers deterministic charge state manipulation. While ambient operation has been key to their appeal, bringing NVs to cryogenic conditions opens new opportunities for alternate forms of …


Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh 2023 The Graduate Center, City University of New York

Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in solid state systems is an intriguing process that allows one to exploit the advantages of both light and matter. In this context, microcavities have become essential platforms for studying the strong coupling regime, where hybrid light-matter states known as exciton-polaritons form, leading to enhanced light matter interaction, modified material properties, and novel quantum phenomena. In this thesis, we explore the phenomenology of exciton-polaritons in strained TMD microcavities, 2D perovskites, fluorescent proteins and organic dyes encompassing thermalization, polariton lasing, and the observation of nonlinear effects.

Transition metal dichalcogenides (TMDs) have emerged as a remarkable class of two- …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron 2023 University of Massachusetts Amherst

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Design Of A Resonant Optical Cavity For Imaging Magneto-Optically Active Thin Film Samples, Cody Robert Brelage 2023 Rose-Hulman Institute of Technology

Design Of A Resonant Optical Cavity For Imaging Magneto-Optically Active Thin Film Samples, Cody Robert Brelage

Graduate Theses - Physics and Optical Engineering

This document describes the design and fabrication of an optical resonator system to investigate magneto-optic properties of thin film samples. This system uses an open-air optical resonator to enable photons to make multiple passes through each thin film and thus increase the magnitude of the Faraday rotation that each sample imposes onto the light that exits the system. This system promises many future experiments to study the magneto-optic properties of thin film and nano-particle samples. Using an optical resonator to enhance Faraday rotation should enable an improved signal-to-noise ratio in taking measurements and images with a photodetector.


The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva 2023 University of the Incarnate Word

The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva

Theses & Dissertations

Visual acuity (VA) is universally accepted as the gold standard metric for ocular vision and function. Contrast sensitivity (CS), color vision, and electrophysiological testing for clinical and occupational settings are warranted despite being deemed ancillary and minimally utilized by clinicians. These assessments provide essential information to subjectively and objectively quantify and obtain optimal functional vision. They are useful for baseline data and monitoring hereditary and progressive ocular conditions and cognitive function. The studies in this dissertation highlight the value of contrast sensitivity, color vision, and cone specific electrophysiological testing, as well as the novel metrics obtained with potential practical clinical …


Hybridly Integrated Semiconductor Lasers And Amplifiers On Iii-V/Si3n4 Platform For Beam Combining And Other Advanced Applications, Siwei Zeng 2023 Clemson University

Hybridly Integrated Semiconductor Lasers And Amplifiers On Iii-V/Si3n4 Platform For Beam Combining And Other Advanced Applications, Siwei Zeng

All Dissertations

Photonic integrated circuits (PICs) are devices that integrate multiple photonic functions on a small chip and allow for accurate dimension control and massive production. Similar to electronic integrated circuits, PICs can significantly reduce the system cost, size, weight, and operation power (CSWaP). Recently, the PIC technology has transformed many optical technologies which traditionally rely on tabletop systems and bulky components, such as optical interconnects, nonlinear optics, and quantum photonics, into a chip-scale platform. This device and system miniaturization has successfully led to a wide range of practical applications in computing, sensing, spectroscopy, and communication. However, the traditional passive PIC platform …


Propagation Of Spatiotemporal Optical Vortex Beams In Linear, Second-Order Dispersive Media, Milo W. Hyde IV, Miguel A. Porras 2023 Air Force Institute of Technolgy

Propagation Of Spatiotemporal Optical Vortex Beams In Linear, Second-Order Dispersive Media, Milo W. Hyde Iv, Miguel A. Porras

Faculty Publications

In this paper, we study the behaviors of spatiotemporal optical vortex (STOV) beams propagating in linear dispersive media. Starting with the Fresnel diffraction integral, we derive a closed-form expression for the STOV field at any propagation distance z in a general second-order dispersive medium. We compare our general result to special cases published in the literature and examine the characteristics of higher-order STOV beams propagating in dispersive materials by varying parameters of the medium and source-plane STOV field. We validate our analysis by comparing theoretical predictions to numerical computations of a higher-order STOV beam propagating through fused silica, where we …


Wave Optics Approach To Solar Cell Brdf Modeling With Experimental Results, Madilynn Compean, Todd V. Small, Milo W. Hyde IV, Michael Marciniak 2023 Air Force Institute of Technology

Wave Optics Approach To Solar Cell Brdf Modeling With Experimental Results, Madilynn Compean, Todd V. Small, Milo W. Hyde Iv, Michael Marciniak

Faculty Publications

Light curve analysis is often used to discern information about satellites in geosynchronous orbits. Solar panels, comprising a large part of the satellite’s body, contribute significantly to these light curves. Historically, theoretical bidirectional reflectance distribution functions (BRDFs) have failed to capture key features in the scattered light from solar panels. In recently published work, a new solar cell BRDF was developed by combining specular microfacet and “two-slit” diffraction terms to capture specular and periodic/array scattering, respectively. This BRDF was experimentally motivated and predicted many features of the solar cell scattered irradiance. However, the experiments that informed the BRDF were limited …


Enhanced Acousto-Optic Properties Of Silicon Carbide Based Layered Structure, Namrata Dewan Soni 2023 Department of Physics, Hansraj College, University of Delhi, Delhi, India

Enhanced Acousto-Optic Properties Of Silicon Carbide Based Layered Structure, Namrata Dewan Soni

Al-Bahir Journal for Engineering and Pure Sciences

This study investigates the feasibility of using silicon carbide-based layered surface acoustic wave (SAW) devices in acousto-optic applications. The acousto-optic properties of the temperature-stable layered structure TeO3/SiC/128oY-X LiNbO3 are investigated through theoretical analysis. This analysis includes the evaluation of key parameters such as the overlap integral, figure of merit, and diffraction efficiency. The SAW propagation characteristics and field profiles required for these calculations are obtained using SAW software. Results show that the layered structure has high diffraction efficiency of nearly 96% and a promising value for the acousto-optic figure of merit, indicating potential use in low driving power acousto-optic devices. …


Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas 2023 Louisiana State University at Baton Rouge

Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas

LSU Doctoral Dissertations

The Hawking effect is an exciting physical prediction lying at the intersection of the two most successful theories of the past century, namely, Einstein’s theory of relativity and quantum mechanics. In this dissertation, we put special emphasis on the quantum aspects of the Hawking process encoded in the entanglement shared by the emitted fluxes of created quanta. In particular, we employ sharp tools from quantum information theory to quantify the entanglement produced by the Hawking effect throughout the black hole evaporation process. Our framework allows us to extend previous calculations of entanglement to a larger set of cases, for instance, …


Size Effect On The Optical Response Of Cylindrical Palladium Nanoparticles, Salem Marhaba, Mohammed Khalaf 2023 Department of Physics, Faculty of Science, Beirut Arab University, Lebanon

Size Effect On The Optical Response Of Cylindrical Palladium Nanoparticles, Salem Marhaba, Mohammed Khalaf

BAU Journal - Science and Technology

In this work, a computational study is carried out to investigate the optical response of palladium nano-cylinders. The Finite Element Method (FEM) is employed using the COMSOL MULTIPHYSICS simulation program to calculate the scattering, absorption, and extinction cross-sections. The influence of the size of the cylindrical nanoparticles on their optical properties is discussed. The results are plotted for a broad spectral range of wavelengths from ultra-violet to infra-red of the incident electromagnetic wave on the cylindrical nanoparticles.


Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri 2023 Chapman University

Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

In this work, we investigate a class of planar photonic structures operating as passive thermoregulators. The radiative cooling process is adjusted through the incorporation of a phase change material (Vanadium Dioxide, VO2) in conjunction with a layer of transparent conductive oxide (Aluminum-doped Zinc Oxide, AZO). VO2 is known to undergo a phase transition from the “dielectric” phase to the “plasmonic” or “metallic” phase at a critical temperature close to 68°C. In addition, AZO shows plasmonic properties at the long-wave infrared spectrum, which, combined with VO2, provides a rich platform to achieve low reflections across the …


Optical Characterisation Of Holographic Diffusers And Bangerter Foils For Treatment Of Amblyopia, Matthew Hellis, Suzanne Martin, Matthew Sheehan, Kevin Murphy 2023 Technological University Dublin

Optical Characterisation Of Holographic Diffusers And Bangerter Foils For Treatment Of Amblyopia, Matthew Hellis, Suzanne Martin, Matthew Sheehan, Kevin Murphy

Articles

Amblyopia is a significant issue for children worldwide, and current treatment methods have drawbacks that can hinder treatment effectiveness and/or patient experience. This study proposes a new treatment method using holographic diffusers while also comparing their optical characteristics to a current treatment method (Bangerter foils). Holographic diffusers were developed by optically patterning thin polymer layers on a micron scale. Two compositions of photopolymer (acrylamide and diacetone acrylamide based) are analysed herein. Characterisation shows that holographic diffusers of either composition can achieve a wide range of on-axis intensity reductions, allowing for precise and customisable treatment levels by altering recording exposure time …


Measuring The Pulse Duration Of A Femtosecond Laser Using Intensity Autocorrelation, Ross N. Relic 2023 Macalester College

Measuring The Pulse Duration Of A Femtosecond Laser Using Intensity Autocorrelation, Ross N. Relic

Macalester Journal of Physics and Astronomy

In this experiment, an intensity autocorrelator is set up in order to measure the pulse duration of a passively mode-locked Titanium-Sapphire laser with a power of 267mW producing femtosecond pulses. Then this measurement, as well as a measurement of the laser’s spectrum, is used to test the Uncertainty Principle. Intensity autocorrelation is a well-established technique for measuring pulse duration, and is among the more intuitive techniques for this purpose, which is why it was selected for this experiment. The experimental setup was computerized. The delay of one half of the pulse was controlled by a motorized translation stage which was …


Characterization Of Boreal-Arctic Vegetation Growth Phases And Active Soil Layer Dynamics In The High-Latitudes Of North America: A Study Combining Multi-Year In Situ And Satellite-Based Observations, Michael G. Brown 2023 The Graduate Center, City University of New York

Characterization Of Boreal-Arctic Vegetation Growth Phases And Active Soil Layer Dynamics In The High-Latitudes Of North America: A Study Combining Multi-Year In Situ And Satellite-Based Observations, Michael G. Brown

Dissertations, Theses, and Capstone Projects

This dissertation examined the seasonal freeze/thaw activity in boreal-Arctic soils and vegetation physiology in Alaska, USA and Alberta, Canada, using in situ environmental measurements and passive microwave satellite observations. The boreal-Arctic high-latitudes have been experiencing ecosystem changes more rapidly in comparison to the rest of Earth due to the presently warming climatic conditions having a magnified effect over Polar Regions. Currently, the boreal-Arctic is a carbon sink; however, recent studies indicate a shift over the next century to become a carbon source. High-latitude vegetation and cold soil dynamics are influenced by climatic shifts and are largely responsible for the regions …


Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Jesús Atencia, Mª Victoria Collados, Suzanne Martin 2023 Technological University Dublin

Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Jesús Atencia, Mª Victoria Collados, Suzanne Martin

Conference Papers

Holographic Optical Elements (HOEs) have the potential to enable more compact, versatile and lightweight optical designs, but many challenges remain. Volume HOE’s have the advantage of high diffraction efficiency but they present both chromatic selectivity and chromatic dispersion which impact on their use with wide spectrum light sources. Single-colour LED sources have a narrow spectrum that reduces these issues and this makes them better suited for use with volume HOEs. However, the LED source size must be taken into consideration for compact volume HOE-LED systems. To investigate the design limits for compact HOE-LED systems, a theoretical and experimental study was …


Tardys Quantifiers: Extracting Temporal And Reversible Dynamical Symmetries, Nhat Vu Minh Nguyen, Arjendu K. Pattanayak, Andres Aragoneses 2023 Eastern Washington University

Tardys Quantifiers: Extracting Temporal And Reversible Dynamical Symmetries, Nhat Vu Minh Nguyen, Arjendu K. Pattanayak, Andres Aragoneses

2023 Symposium

One of the great challenges in complex and chaotic dynamics is to reveal the details of its underlying determinism. This can be manifest in the form of temporal correlations or structured patterns in the dynamics of a measurable variable. These temporal dynamical structures are sometimes a consequence of hidden global symmetries. Here we identify the temporal (approximate) symmetries of a semiconductor laser with external optical feedback, based on which we define the Temporal And Reversible DYnamical Symmetry (TARDYS) quantifiers to evaluate the relevance of specific temporal correlations in a time series. We show that these symmetries are also present in …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn 2023 Dartmouth College

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids [U.S. Patent Us11650370b2], Hengky Chandrahalim, Kyle T. Bodily 2023 Air Force Institute of Technology

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids [U.S. Patent Us11650370b2], Hengky Chandrahalim, Kyle T. Bodily

Faculty Publications

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Photonic Sensors Based On Integrated Ring Resonators, Jaime Da Silva 2023 Southern Methodist University

Photonic Sensors Based On Integrated Ring Resonators, Jaime Da Silva

Mechanical Engineering Research Theses and Dissertations

This thesis investigates the application of integrated ring resonators to different sensing applications. The sensors proposed here rely on the principle of optical whispering gallery mode (WGM) resonance shifts of the resonators. Three distinct sensing applications are investigated to demonstrate the concept: a photonic seismometer, an evanescent field sensor, and a zero-drift Doppler velocimeter. These concepts can be helpful in developing lightweight, compact, and highly sensitive sensors. Successful implementation of these sensors could potentially address sensing requirements for both space and Earth-bound applications. The feasibility of this class of sensors is assessed for seismic, proximity, and vibrational measurements.


Digital Commons powered by bepress