Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,828 Full-Text Articles 2,482 Authors 202,377 Downloads 94 Institutions

All Articles in Optics

Faceted Search

1,828 full-text articles. Page 1 of 65.

From Photon To Neuron Chapter 17: Rainbows And Other Caustics, Philip C. Nelson 2018 University of Pennsylvania

From Photon To Neuron Chapter 17: Rainbows And Other Caustics, Philip C. Nelson

Department of Physics Papers

This chapter extends Part III of the book From Photon to Neuron (Princeton Univ Press 2017). This preliminary version is made freely available as-is in the hope that it will be useful.


Plasmonic Enhancement Of Photoluminescence And Photobrightening In Cdse Quantum Dots, David Alan French 2018 University of Arkansas, Fayetteville

Plasmonic Enhancement Of Photoluminescence And Photobrightening In Cdse Quantum Dots, David Alan French

Theses and Dissertations

Quantum dots are gaining recognition not just in the physics and chemistry community, but in the public eye as well. Quantum dot technologies are now being used in sensors, detectors, and even television displays. By exciting quantum dots with light or electricity, they can be made to emit light, and by altering the quantum dot characteristics the wavelength can be finely tuned. The light emitted can be also be made more intense by an increase in the excitation energy. The excitation light can be increased via plasmonic enhancement, leading to increased luminescence. Aside from the relatively steady-state response, quantum dots ...


Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia 2018 University of Arkansas, Fayetteville

Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia

Theses and Dissertations

The high exciton binding energy in one dimensional (1D) nano-structures makes them prominent for optoelectronic device applications, making it relevant to theoretically investigate their electronic and optical properties. Many-body effects that are not captured by the conventional density functional theory (DFT) have a huge impact in such selenium and tellurium single helical atomic chains. This work goes one step beyond DFT to include the electron self-energy effects within the GW approximation to obtain a corrected quasi-particle electronic structure. Further, the Bethe-Salpeter equation was solved to obtain the absorption spectrum and to capture excitonic effects. Results were obtained using the Hyberstein-Louie ...


Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani 2018 University of New Mexico

Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani

Shared Knowledge Conference

An interferometer or resonator is a device in which optical beams of specific frequencies circulate with minimal losses. These losses are completely compensated by the gain inside a laser resonator. A small perturbation introduced inside the laser can affect its frequency, which in turns becomes a metric of that perturbation. The perturbation is usually caused by an electric or magnetic field, rotation, acceleration, nonlinear index of refraction etc. Tiny changes of optical frequency are monitored by superimposing the laser field and a reference field (from the same laser) on a detector. This technique requires creating a laser in which two ...


Charge Transfer Plasmon Resonances In Metallic Nanorod-Film Systems, Paul J. Gieri 2018 University of New Mexico

Charge Transfer Plasmon Resonances In Metallic Nanorod-Film Systems, Paul J. Gieri

Shared Knowledge Conference

Understanding how the plasmonic response of colloidally grown metallic nanostructures changes when coupled to a metallic film is an important research problem with significant consequences for a number of applications such as sensing, solar energy harvesting, spectroscopy, and photochemistry, to name a few. In this work we investigate, both through experimental and theoretical approaches, the optical response of ligand coated gold nanorods and their interaction with gold films. We find that the scattering response of these systems is dominated by a charge transfer plasmon, in which charge flows between the particle and film. Additionally, we show that the characteristics of ...


Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado 2018 University of New Mexico

Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado

Shared Knowledge Conference

Photonic crystals allow light to be controlled and manipulated such that novel photonic devices can be created. We are interested in using photonic crystals to increase the energy efficiency of our semiconductor whistle-geometry ring lasers. A photonic crystal will enable us to reduce the ring size, while maintaining confinement, thereby reducing its operating power. Photonic crystals can also exhibit slow light that will increase the interaction with the material. This will increase the gain, and therefore, lower the threshold for lasing to occur. Designing a photonic crystal for a particular application can be a challenge due to its number of ...


Combined High-Speed Single Particle Tracking Of Membrane Proteins And Super-Resolution Of Membrane-Associated Structures, Hanieh Mazloom Farsibaf, Keith A. Lidke 2018 University of New Mexico

Combined High-Speed Single Particle Tracking Of Membrane Proteins And Super-Resolution Of Membrane-Associated Structures, Hanieh Mazloom Farsibaf, Keith A. Lidke

Shared Knowledge Conference

Many experiments have shown that the diffusive motion of lipids and membrane proteins are slower on the cell surface than those in artificial lipid bilayers or blebs. One hypothesis that may partially explain this mystery is the effect of the cytoskeleton structures on the protein dynamics. A model proposed by Kusumi [1] is the Fence-Picket Model which describes the cell membrane as a set of compartment regions, each ~ 10 to 200 nm in size, created by direct or indirect interaction of lipids and proteins with actin filaments just below the membrane. To test this hypothesis, we have assembled a high-speed ...


Beam Theory For Classical And Quantum Nonlinear Optics---Exposing Classical And Quantum Correlations Of Transverse-Spatial Modes, Robert Nicholas Lanning 2018 Louisiana State University and Agricultural and Mechanical College

Beam Theory For Classical And Quantum Nonlinear Optics---Exposing Classical And Quantum Correlations Of Transverse-Spatial Modes, Robert Nicholas Lanning

LSU Doctoral Dissertations

Optics is arguably the most important branch of physics that has ever been studied. It is not only an essential ingredient of many other branches of physics that we study, it governs how we see, how we measure, and how we communicate in the modern world. And as the world continues to change, so do our tools and resources. In a relatively short amount of time, we have progressed from rudimentary tools that shape the world around us, to tools that harness the fundamental laws of nature. Unsurprisingly, the laws of nature governing optics remain paramount. This is because many ...


Efficiency Enhancement Of Perovskite Solar Cells With Plasmonic Nanoparticles: A Simulation Study, Ali Hajjiah, Ishac Kandas, Nader Shehata 2018 Kuwait University

Efficiency Enhancement Of Perovskite Solar Cells With Plasmonic Nanoparticles: A Simulation Study, Ali Hajjiah, Ishac Kandas, Nader Shehata

Biology Faculty Publications

Recently, hybrid organic-inorganic perovskites have been extensively studied due to their promising optical properties with relatively low-cost and simple processing. However, the perovskite solar cells have some low optical absorption in the visible spectrum, especially around the red region. In this paper, an improvement of perovskite solar cell efficiency is studied via simulations through adding plasmonic nanoparticles (NPs) at the rear side of the solar cell. The plasmonic resonance wavelength is selected to be very close to the spectrum range of lower absorption of the perovskite: around 600 nm. Both gold and silver nanoparticles (Au and Ag NPs) are selected ...


Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl 2018 University of Wisconsin Milwaukee

Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl

Physics Faculty Articles

Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 μmol m−2 s−1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the ...


Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw 2018 The Graduate Center, City University of New York

Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw

All Dissertations, Theses, and Capstone Projects

In recent years, defect centers in wide band gap semiconductors such as diamond, have received significant attention. Defects offer great utility as single photon emitters, nanoscale sensors, and quantum memories and registers for quantum computation. Critical to the utility of these defects, is their charge state.

In this dissertation, experiments surrounding the charge state dynamics and the carrier dynamics are performed and analyzed. Extensive studies of the ionization and recombination processes of defects in diamond, specifically, the Nitrogen Vacancy (NV) center, have been performed. Diffusion of ionized charge carriers has been imaged indirectly through the recapture of said carriers by ...


Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, T. J. Carroll, C. I. Sukenik 2018 Old Dominion University

Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, T. J. Carroll, C. I. Sukenik

Physics Faculty Publications

We have experimentally investigated a catalysis effect in the resonant energy transfer between ultracold 85Rb Rydberg atoms. We studied the time dependence of the process, 34p + 34p → 34s + 35s, and observed an enhancement of 34s state population when 34d state atoms are added. We have also performed numerical model simulations, which are in qualitative agreement with experiment and indicate that the enhancement arises from a redistribution of p-state atoms due to the presence of the d-state atoms.


Techniques For Improved Space Object Detection Performance From Ground-Based Telescope Systems Using Long And Short Exposure Images, David J. Becker 2018 Air Force Institute of Technology

Techniques For Improved Space Object Detection Performance From Ground-Based Telescope Systems Using Long And Short Exposure Images, David J. Becker

Theses and Dissertations

Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This research focuses on improving current space object detection algorithms and developing new algorithms ...


From Photon To Neuron Chapter 16: Tunneling Of Photons And Electrons, Philip C. Nelson 2018 University of Pennsylvania

From Photon To Neuron Chapter 16: Tunneling Of Photons And Electrons, Philip C. Nelson

Department of Physics Papers

This chapter extends Part III of the book From Photon to Neuron (Princeton Univ Press 2017). This preliminary version is made freely available as-is in the hope that it will be useful.


In Vivo Vascular Imaging With Photoacoustic Microscopy, Hsun-Chia Hsu 2018 Washington University in St. Louis

In Vivo Vascular Imaging With Photoacoustic Microscopy, Hsun-Chia Hsu

Engineering and Applied Science Theses & Dissertations

Photoacoustic (PA) tomography (PAT) has received extensive attention in the last decade for its capability to provide label-free structural and functional imaging in biological tissue with highly scalable spatial resolution and penetration depth. Compared to modern optical modalities, PAT offers speckle-free images and is more sensitive to optical absorption contrast (with 100% relative sensitivity). By implementing different regimes of optical wavelength, PAT can be used to image diverse light-absorbing biomolecules. For example, hemoglobin is of particular interest in the visible wavelength regime owing to its dominant absorption, and lipids and water are more commonly studied in the near-infrared regime.

In ...


Automating Mobile Device File Format Analysis, Richard A. Dill 2018 Air Force Institute of Technology

Automating Mobile Device File Format Analysis, Richard A. Dill

Theses and Dissertations

Forensic tools assist examiners in extracting evidence from application files from mobile devices. If the file format for the file of interest is known, this process is straightforward, otherwise it requires the examiner to manually reverse engineer the data structures resident in the file. This research presents the Automated Data Structure Slayer (ADSS), which automates the process to reverse engineer unknown file for- mats of Android applications. After statically parsing and preparing an application, ADSS dynamically runs it, injecting hooks at selected methods to uncover the data structures used to store and process data before writing to media. The resultant ...


Scattering Of Few Photon Fields By Two Level Systems In A One Dimensional Geometry, William Konyk 2018 University of Arkansas, Fayetteville

Scattering Of Few Photon Fields By Two Level Systems In A One Dimensional Geometry, William Konyk

Theses and Dissertations

Recent experimental progress has realized strong, efficient coupling of effective two level systems to waveguides. We study the scattering of multimode photons from such emitters coupled losslessly to the confined geometry of a one dimensional waveguide. We develop novel techniques for describing the scattered state of both single and multi-photon wavepackets and explore how such wavepackets interact with arrays of emitters coupled to a one dimensional waveguide. Finally, we apply these techniques and analyze the capability of two particular systems to act as a quantum conditional logic gate.


Investigation Of Spin And Dip-Coating Phase Change Chalcogenide Materials As A Novel Technique For Coating And Functionalizing Conformal Optics, Paul Vecchio 2018 Ursinus College

Investigation Of Spin And Dip-Coating Phase Change Chalcogenide Materials As A Novel Technique For Coating And Functionalizing Conformal Optics, Paul Vecchio

Physics and Astronomy Summer Fellows

Chalcogenide glasses (ChGs) have excellent infrared (IR) transparency ranging up to 20 μm, large nonlinear refractive indices, and tailorable thermo-optic coefficients (dn/dT) that have great potential for applications in detectors, sensors, waveguides, imaging devices, photonic waveguides, acousto-optics, and optical devices. Spin and dip coating ChGs from solution is a low-cost, simple, and scalable method for depositing films over a large area. In this study, we utilize the novel approach of spin and dip coating to create thin ChG films of arsenic trisulfide (As2S3) and arsenic selenide (As2Se3). To realize the full potential of ...


Novel Compact Narrow-Linewidth Mid-Infrared Lasers For Sensing Applications, Behsan Behzadi 2018 University of New Mexico - Main Campus

Novel Compact Narrow-Linewidth Mid-Infrared Lasers For Sensing Applications, Behsan Behzadi

Optical Science and Engineering ETDs

The mid-infrared (2-14 μm) spectral region contains the strong absorption lines of many important molecular species, which make this region crucial for several well-know applications such as spectroscopy, chemical and biochemical sensing, security, and industrial monitoring. To fully exploit this region through absorption spectroscopic techniques, compact and low-cost narrow-linewidth (NLW) mid-infrared (MIR) laser sources are of primary importance.

This thesis is focused on three novel compact NLW MIR lasers: demonstration and characterization of a new glass-based spherical microlaser, investigation of the performance of a novel fiber laser, and the design of a monolithic laser on a silicon chip. Starting with ...


Design, Fabrication, And Characterization Of A One-Dimensional Single-Material Polarizing Photonic Crystal, Ehsan Ordouie 2018 Rose-Hulman Institute of Technology

Design, Fabrication, And Characterization Of A One-Dimensional Single-Material Polarizing Photonic Crystal, Ehsan Ordouie

Graduate Theses - Physics and Optical Engineering

We examine a multilayered one-dimensional (1D) polarizing photonic crystal designed and fabricated out of a single material. This polarizer is designed for high reflection of the s polarization and low reflection of p polarization at the wavelength of 632.8 nm. This device is fabricated implementing the oblique angle deposition technique to produce six-bilayers of alternating high to low indices of titanium dioxide using e-beam PVD for depositing on top of a fused silica substrate. For modeling, we used transfer-matrix method and numerical finite-difference time-domain analysis to simulate behavior of the 1D photonic bandgap structure. Both model and simulation predict ...


Digital Commons powered by bepress