Open Access. Powered by Scholars. Published by Universities.®

Statistics and Probability Commons

Open Access. Powered by Scholars. Published by Universities.®

12,118 Full-Text Articles 18,599 Authors 3,366,482 Downloads 246 Institutions

All Articles in Statistics and Probability

Faceted Search

12,118 full-text articles. Page 1 of 368.

"A Comparison Of Variable Selection Methods Using Bootstrap Samples From Environmental Metal Mixture Data", Paul-Yvann Djamen 4785403, Paul-Yvann Djamen 2020 University Of New Mexico

"A Comparison Of Variable Selection Methods Using Bootstrap Samples From Environmental Metal Mixture Data", Paul-Yvann Djamen 4785403, Paul-Yvann Djamen

Mathematics & Statistics ETDs

In this thesis, I studied a newly developed variable selection method SODA, and three customarily used variable selection methods: LASSO, Elastic net, and Random forest for environmental mixture data. The motivating datasets have neuro-developmental status as responses and metal measurements and demographic variables as covariates. The challenges for variable selections include (1) many measured metal concentrations are highly correlated, (2) there are many possible ways of modeling interactions among the metals, (3) the relationships between the outcomes and explanatory variables are possibly nonlinear, (4) the signal to noise ratio in the real data may be low. To compare these methods ...


Comparison Of Scale Identification Methods In Mixture Irt Models, Youn-Jeng Choi, Allan S. Cohen 2020 University of Alabama

Comparison Of Scale Identification Methods In Mixture Irt Models, Youn-Jeng Choi, Allan S. Cohen

Journal of Modern Applied Statistical Methods

The effects of three scale identification constraints in mixture IRT models were studied. A simulation study found no constraint effect on the mixture Rasch and mixture 2PL models, but the item anchoring constraint was the only one that worked well on selecting correct model with the mixture 3PL model.


On Variable Selections In High-Dimensional Incomplete Data, TAO SUN 2020 Department of Mathematics and Statisticshigh-dimensional data; missing value; variable selection; missForest; self-training selection; random lasso; stability selection; Meta-analysis

On Variable Selections In High-Dimensional Incomplete Data, Tao Sun

Major Papers

Modern Statistics has entered the era of Big Data, wherein data sets are too large, high-dimensional, incomplete and complex for most classical statistical methods. This analysis of Big data firstly focuses on missing data. We compare different multiple imputation methods. Combining the characteristics of medical high-throughput experiments, we compared multivariate imputation by chained equations (MICE), missing forest (missForest), as well as self-training selection (STS) methods. A phenotypic data set of common lung disease was assessed. Moreover, in terms of improving the interpretability and predictability of the model, variable selection plays a pivotal role in the following analysis. Taking the Lasso-Poisson ...


A Note On Inferences About The Probability Of Success, Rand Wilcox 2020 University of Southern California

A Note On Inferences About The Probability Of Success, Rand Wilcox

Journal of Modern Applied Statistical Methods

There is an extensive literature dealing with inferences about the probability of success. A minor goal in this note is to point out when certain recommended methods can be unsatisfactory when the sample size is small. The main goal is to report results on the two-sample case. Extant results suggest using one of four methods. The results indicate when computing a 0.95 confidence interval, two of these methods can be more satisfactory when dealing with small sample sizes.


At The Interface Of Algebra And Statistics, Tai-Danae Bradley 2020 The Graduate Center, City University of New York

At The Interface Of Algebra And Statistics, Tai-Danae Bradley

All Dissertations, Theses, and Capstone Projects

This thesis takes inspiration from quantum physics to investigate mathematical structure that lies at the interface of algebra and statistics. The starting point is a passage from classical probability theory to quantum probability theory. The quantum version of a probability distribution is a density operator, the quantum version of marginalizing is an operation called the partial trace, and the quantum version of a marginal probability distribution is a reduced density operator. Every joint probability distribution on a finite set can be modeled as a rank one density operator. By applying the partial trace, we obtain reduced density operators whose diagonals ...


Research In Short Term Actuarial Modeling, Elijah Howells 2020 California State University, San Bernardino

Research In Short Term Actuarial Modeling, Elijah Howells

Electronic Theses, Projects, and Dissertations

This paper covers mathematical methods used to conduct actuarial analysis in the short term, such as policy deductible analysis, maximum covered loss analysis, and mixtures of distributions. Assessment of a loss variable's distribution under the effect of a policy deductible, as well as one with an implemented maximum covered loss, and under both a policy deductible and maximum covered loss will also be covered. The derivation, meaning, and use of cost per loss and cost per payment will be discussed, as will those of an aggregate sum distribution, stop loss policy, and maximum likelihood estimation. For each topic, special ...


Comparing Means Under Heteroscedasticity And Nonnormality: Further Exploring Robust Means Modeling, Alyssa Counsell, Robert Philip Chalmers, Robert A. Cribbie 2020 York University, Toronto

Comparing Means Under Heteroscedasticity And Nonnormality: Further Exploring Robust Means Modeling, Alyssa Counsell, Robert Philip Chalmers, Robert A. Cribbie

Journal of Modern Applied Statistical Methods

Comparing the means of independent groups is a concern when the assumptions of normality and variance homogeneity are violated. Robust means modeling (RMM) was proposed as an alternative to ANOVA-type procedures when the assumptions of normality and variance homogeneity are violated. The purpose of this study is to compare the Type I error and power rates of RMM to the trimmed Welch procedure. A Monte Carlo study was used to investigate RMM and the trimmed Welch procedure under several conditions of nonnormality and variance heterogeneity. The results suggest that the trimmed Welch provides a better balance of Type I error ...


Inferences About The Probability Of Success, Given The Value Of A Covariate, Using A Nonparametric Smoother, Rand Wilcox 2020 University of Southern California

Inferences About The Probability Of Success, Given The Value Of A Covariate, Using A Nonparametric Smoother, Rand Wilcox

Journal of Modern Applied Statistical Methods

For a binary random variable Y, let p(x) = P(Y = 1 | X = x) for some covariate X. The goal of computing a confidence interval for p(x) is considered. In the logistic regression model, even a slight departure difficult to detect via a goodness-of-fit test can yield inaccurate results. The accuracy of a confidence interval can deteriorate as the sample size increases. The goal is to suggest an alternative approach based on a smoother, which provides a more flexible approximation of p(x).


Integrated Multiple Mediation Analysis: A Robustness–Specificity Trade-Off In Causal Structure, An-Shun Tai, Sheng-Hsuan Lin 2020 Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan.

Integrated Multiple Mediation Analysis: A Robustness–Specificity Trade-Off In Causal Structure, An-Shun Tai, Sheng-Hsuan Lin

Harvard University Biostatistics Working Paper Series

Recent methodological developments in causal mediation analysis have addressed several issues regarding multiple mediators. However, these developed methods differ in their definitions of causal parameters, assumptions for identification, and interpretations of causal effects, making it unclear which method ought to be selected when investigating a given causal effect. Thus, in this study, we construct an integrated framework, which unifies all existing methodologies, as a standard for mediation analysis with multiple mediators. To clarify the relationship between existing methods, we propose four strategies for effect decomposition: two-way, partially forward, partially backward, and complete decompositions. This study reveals how the direct and ...


Waiting-Time Paradox In 1922, Naoki Masuda, Takayuki Hiraoka 2020 University at Buffalo

Waiting-Time Paradox In 1922, Naoki Masuda, Takayuki Hiraoka

Northeast Journal of Complex Systems (NEJCS)

We present an English translation and discussion of an essay that a Japanese physicist, Torahiko Terada, wrote in 1922. In the essay, he described the waiting-time paradox, also called the bus paradox, which is a known mathematical phenomenon in queuing theory, stochastic processes, and modern temporal network analysis. He also observed and analyzed data on Tokyo City trams to verify the relevance of the waiting-time paradox to busy passengers in Tokyo at the time. This essay seems to be one of the earliest documentations of the waiting-time paradox in a sufficiently scientific manner.


Metabolomic Profiling Of Nicotiana Spp. Nectars Indicate That Pollinator Feeding Preference Is A Stronger Determinant Than Plant Phylogenetics In Shaping Nectar Diversity, Fredy A. Silva, Elizabeth C. Chatt, Siti-Nabilla Mahalim, Adel Guirgis, Xingche Guo, Dan S. Nettleton, Basil J. Nikolau, Robert W. Thornburg 2020 Iowa State University

Metabolomic Profiling Of Nicotiana Spp. Nectars Indicate That Pollinator Feeding Preference Is A Stronger Determinant Than Plant Phylogenetics In Shaping Nectar Diversity, Fredy A. Silva, Elizabeth C. Chatt, Siti-Nabilla Mahalim, Adel Guirgis, Xingche Guo, Dan S. Nettleton, Basil J. Nikolau, Robert W. Thornburg

Statistics Publications

Floral nectar is a rich secretion produced by the nectary gland and is offered as reward to attract pollinators leading to improved seed set. Nectars are composed of a complex mixture of sugars, amino acids, proteins, vitamins, lipids, organic and inorganic acids. This composition is influenced by several factors, including floral morphology, mechanism of nectar secretion, time of flowering, and visitation by pollinators. The objective of this study was to determine the contributions of flowering time, plant phylogeny, and pollinator selection on nectar composition in Nicotiana. The main classes of nectar metabolites (sugars and amino acids) were quantified using gas ...


On Statistical Significance Of Discriminant Function Coefficients, Tolulope T. Sajobi, Gordon H. Fick, Lisa M. Lix 2020 University of Calgary

On Statistical Significance Of Discriminant Function Coefficients, Tolulope T. Sajobi, Gordon H. Fick, Lisa M. Lix

Journal of Modern Applied Statistical Methods

Discriminant function coefficients are useful for describing group differences and identifying variables that distinguish between groups. Test procedures were compared based on asymptotically approximations, empirical, and exact distributions for testing hypotheses about discriminant function coefficients. These tests are useful for assessing variable importance in multivariate group designs.


Sensitivity Analysis For Incomplete Data And Causal Inference, Heng Chen 2020 Southern Methodist University

Sensitivity Analysis For Incomplete Data And Causal Inference, Heng Chen

Statistical Science Theses and Dissertations

In this dissertation, we explore sensitivity analyses under three different types of incomplete data problems, including missing outcomes, missing outcomes and missing predictors, potential outcomes in \emph{Rubin causal model (RCM)}. The first sensitivity analysis is conducted for the \emph{missing completely at random (MCAR)} assumption in frequentist inference; the second one is conducted for the \emph{missing at random (MAR)} assumption in likelihood inference; the third one is conducted for one novel assumption, the ``sixth assumption'' proposed for the robustness of instrumental variable estimand in causal inference.


Statistical Models And Analysis Of Univariate And Multivariate Degradation Data, Lochana Palayangoda 2020 Southern Methodist University

Statistical Models And Analysis Of Univariate And Multivariate Degradation Data, Lochana Palayangoda

Statistical Science Theses and Dissertations

For degradation data in reliability analysis, estimation of the first-passage time (FPT) distribution to a threshold provides valuable information on reliability characteristics. Recently, Balakrishnan and Qin (2019; Applied Stochastic Models in Business and Industry, 35:571-590) studied a nonparametric method to approximate the FPT distribution of such degradation processes if the underlying process type is unknown. In this thesis, we propose improved techniques based on saddlepoint approximation, which enhance upon their suggested methods. Numerical examples and Monte Carlo simulation studies are used to illustrate the advantages of the proposed techniques. Limitations of the improved techniques are discussed and some possible ...


Evaluation Of The Utility Of Informative Priors In Bayesian Structural Equation Modeling With Small Samples, Hao Ma 2020 Southern Methodist University

Evaluation Of The Utility Of Informative Priors In Bayesian Structural Equation Modeling With Small Samples, Hao Ma

Department of Education Policy and Leadership Theses and Dissertations

The estimation of parameters in structural equation modeling (SEM) has been primarily based on the maximum likelihood estimator (MLE) and relies on large sample asymptotic theory. Consequently, the results of the SEM analyses with small samples may not be as satisfactory as expected. In contrast, informative priors typically do not require a large sample, and they may be helpful for improving the quality of estimates in the SEM models with small samples. However, the role of informative priors in the Bayesian SEM has not been thoroughly studied to date. Given the limited body of evidence, specifying effective informative priors remains ...


Statistical Inference Of Adaptation At Multiple Genomic Scales Using Supervised Classification And A Hidden Markov Model, Lauren A. Sugden 2020 Duquesne University

Statistical Inference Of Adaptation At Multiple Genomic Scales Using Supervised Classification And A Hidden Markov Model, Lauren A. Sugden

Biology and Medicine Through Mathematics Conference

No abstract provided.


An Improved Two Independent-Samples Randomization Test For Single-Case Ab-Type Intervention Designs: A 20-Year Journey, Joel R. Levin, John M. Ferron, Boris S. Gafurov 2020 University of Arizona

An Improved Two Independent-Samples Randomization Test For Single-Case Ab-Type Intervention Designs: A 20-Year Journey, Joel R. Levin, John M. Ferron, Boris S. Gafurov

Journal of Modern Applied Statistical Methods

Detailed is a 20-year arduous journey to develop a statistically viable two-phase (AB) single-case two independent-samples randomization test procedure. The test is designed to compare the effectiveness of two different interventions that are randomly assigned to cases. In contrast to the unsatisfactory simulation results produced by an earlier proposed randomization test, the present test consistently exhibited acceptable Type I error control under various design and effect-type configurations, while at the same time possessing adequate power to detect moderately sized intervention-difference effects. Selected issues, applications, and a multiple-baseline extension of the two-sample test are discussed.


Support Vector Machine-Based Modified Sp Statistic For Subset Selection With Non-Normal Error Terms, Shivaji Shripati Desai, D N. Kashid 2020 Department of Statistics, Gopal Krishna Gokhale College, Kolhapur (MS), India.

Support Vector Machine-Based Modified Sp Statistic For Subset Selection With Non-Normal Error Terms, Shivaji Shripati Desai, D N. Kashid

Journal of Modern Applied Statistical Methods

Support vector machine (SVM) is used for estimation of regression parameters to modify the sum of cross products (Sp). It works well for some nonnormal error distributions. The performance of existing robust methods and the modified Sp is evaluated through simulated and real data. The results show the performance of the modified Sp is good.


Recurrence Relations For Marginal And Joint Moment Generating Functions Of Topp-Leone Generated Exponential Distribution Based On Record Values And Its Characterization, Zaki Anwar, Neetu Gupta, Mohd Akram Raza Khan, Qazi Azhad Jamal 2020 Aligarh Muslim University

Recurrence Relations For Marginal And Joint Moment Generating Functions Of Topp-Leone Generated Exponential Distribution Based On Record Values And Its Characterization, Zaki Anwar, Neetu Gupta, Mohd Akram Raza Khan, Qazi Azhad Jamal

Journal of Modern Applied Statistical Methods

The exact expressions and some recurrence relations are derived for marginal and joint moment generating functions of kth lower record values from Topp-Leone Generated (TLG) Exponential distribution. This distribution is characterized by using the recurrence relation of the marginal moment generating function of kth lower record values.


A New Exponential Approach For Reducing The Mean Squared Errors Of The Estimators Of Population Mean Using Conventional And Non-Conventional Location Parameters, Housila P. Singh, Anita Yadav 2020 Vikram University, Ujjain, India

A New Exponential Approach For Reducing The Mean Squared Errors Of The Estimators Of Population Mean Using Conventional And Non-Conventional Location Parameters, Housila P. Singh, Anita Yadav

Journal of Modern Applied Statistical Methods

Classes of ratio-type estimators t (say) and ratio-type exponential estimators te (say) of the population mean are proposed, and their biases and mean squared errors under large sample approximation are presented. It is the class of ratio-type exponential estimators te provides estimators more efficient than the ratio-type estimators.


Digital Commons powered by bepress