Interactions Between Sediment Mechanical Structure And Infaunal Community Structure Following Physical Disturbance,
2023
University of South Alabama
Interactions Between Sediment Mechanical Structure And Infaunal Community Structure Following Physical Disturbance, William Cyrus Roger Clemo
Theses and Dissertations
Shallow, river-influenced coastal sediments are important for global carbon storage and nutrient cycling and provide a habitat for diverse communities of invertebrates (infauna). Elevated bed shear stress from extreme storms can resuspend, transport, and deposit sediments, disrupting the cohesive structure of muds, and sorting and depositing sand eroded from beaches. These physical disruptions can also resuspend or smother infauna, decreasing abundances and changing community structure. Infaunal activities such as burrowing, tube construction, and feeding can impact sediment structure and stability. However, little is known about how physical disturbance impacts short and long-term sediment habitat suitability and whether disturbance-tolerant infauna influence …
The Private Pilot Check Ride: Applying The Spacing Effect Theory To Predict Time To Proficiency For The Practical Test,
2023
Florida Institute of Technology - Melbourne
The Private Pilot Check Ride: Applying The Spacing Effect Theory To Predict Time To Proficiency For The Practical Test, Michael Scott Harwin
Theses and Dissertations
This study examined the relationship between a set of targeted factors and the total flight time students needed to become ready to take the private pilot check ride. The study was grounded in Ebbinghaus’s (1885/1913/2013) forgetting curve theory and spacing effect, and Ausubel’s (1963) theory of meaningful learning. The research factors included (a) training time to proficiency, which represented the number of training days needed to become check-ride ready; (b) flight training program (Part 61 vs. Part 141); (c) organization offering the training program (2- or 4-year college/university vs. FBO); (d) scheduling policy (mandated vs. student-driven); and demographical variables, which …
Expansionary Fiscal Contraction Hypothesis: An Evidence From Pakistan,
2023
Pakistan Institute of Development Economics (PIDE), Islamabad Researcher, NIPS
Expansionary Fiscal Contraction Hypothesis: An Evidence From Pakistan, Aisha Irum
CBER Conference
The fiscal sector in Pakistan has been facing mule-layered challenges over several years. One of the reasons is the stubborn and unproductive nature of its public expenditure, and the other one is the lower tax revenues. This issue of hovering fiscal deficit is mostly dealt with the tools of fiscal contraction/austerity which can have a potential impact on the private sector of the economy. Thus, the question which has been addressed in this study is whether the Expansionary Fiscal Contraction (EFC) hypothesis holds in case of Pakistan. Fiscal contraction episodes have been identified using growth in the growth rates of …
Nonparametric Derivative Estimation Using Penalized Splines: Theory And Application,
2023
University of Massachusetts Amherst
Nonparametric Derivative Estimation Using Penalized Splines: Theory And Application, Bright Antwi Boasiako
Doctoral Dissertations
This dissertation is in the field of Nonparametric Derivative Estimation using
Penalized Splines. It is conducted in two parts. In the first part, we study the L2
convergence rates of estimating derivatives of mean regression functions using penalized splines. In 1982, Stone provided the optimal rates of convergence for estimating derivatives of mean regression functions using nonparametric methods. Using these rates, Zhou et. al. in their 2000 paper showed that the MSE of derivative estimators based on regression splines approach zero at the optimal rate of convergence. Also, in 2019, Xiao showed that, under some general conditions, penalized spline estimators …
Parameter Estimation For Normally Distributed Grouped Data And Clustering Single-Cell Rna Sequencing Data Via The Expectation-Maximization Algorithm,
2023
Western University
Parameter Estimation For Normally Distributed Grouped Data And Clustering Single-Cell Rna Sequencing Data Via The Expectation-Maximization Algorithm, Zahra Aghahosseinalishirazi
Electronic Thesis and Dissertation Repository
The Expectation-Maximization (EM) algorithm is an iterative algorithm for finding the maximum likelihood estimates in problems involving missing data or latent variables. The EM algorithm can be applied to problems consisting of evidently incomplete data or missingness situations, such as truncated distributions, censored or grouped observations, and also to problems in which the missingness of the data is not natural or evident, such as mixed-effects models, mixture models, log-linear models, and latent variables. In Chapter 2 of this thesis, we apply the EM algorithm to grouped data, a problem in which incomplete data are evident. Nowadays, data confidentiality is of …
Traditional Vs Machine Learning Approaches: A Comparison Of Time Series Modeling Methods,
2023
Southern Methodist University
Traditional Vs Machine Learning Approaches: A Comparison Of Time Series Modeling Methods, Miguel E. Bonilla Jr., Jason Mcdonald, Tamas Toth, Bivin Sadler
SMU Data Science Review
In recent years, various new Machine Learning and Deep Learning algorithms have been introduced, claiming to offer better performance than traditional statistical approaches when forecasting time series. Studies seeking evidence to support the usage of ML/DL over statistical approaches have been limited to comparing the forecasting performance of univariate, linear time series data. This research compares the performance of traditional statistical-based and ML/DL methods for forecasting multivariate and nonlinear time series.
A Data-Driven Multi-Regime Approach For Predicting Real-Time Energy Consumption Of Industrial Machines.,
2023
University of Louisville
A Data-Driven Multi-Regime Approach For Predicting Real-Time Energy Consumption Of Industrial Machines., Abdulgani Kahraman
Electronic Theses and Dissertations
This thesis focuses on methods for improving energy consumption prediction performance in complex industrial machines. Working with real-world industrial machines brings several challenges, including data access, algorithmic bias, data privacy, and the interpretation of machine learning algorithms. To effectively manage energy consumption in the industrial sector, it is essential to develop a framework that enhances prediction performance, reduces energy costs, and mitigates air pollution in heavy industrial machine operations. This study aims to assist managers in making informed decisions and driving the transition towards green manufacturing. The energy consumption of industrial machinery is substantial, and the recent increase in CO2 …
Geometric Morphometric Analysis Of Modern Viperid Vertebrae Facilitates Identification Of Fossil Specimens,
2023
East Tennessee State University
Geometric Morphometric Analysis Of Modern Viperid Vertebrae Facilitates Identification Of Fossil Specimens, Lance D. Jessee
Electronic Theses and Dissertations
Snake vertebrae are common in the fossil record, whereas cranial remains are generally fragile and rare. Consequently, vertebrae are the most commonly studied fossil element of snakes. However, identification of snake vertebrae can be problematic due to extensive variation. This study utilizes 2-D geometric morphometrics and canonical variates analysis to 1) reveal variation between genera and species and 2) classify vertebrae of modern and fossil eastern North American Agkistrodon and Crotalus. The results show that vertebrae of Agkistrodon and Crotalus can reliably be classified to genus and species using these methods. Based on the statistical analyses, four of the …
A Multivariate Investigation Of The Motivational, Academic, And Well-Being Characteristics Of First-Generation And Continuing-Generation College Students,
2023
The University of Texas at Tyler
A Multivariate Investigation Of The Motivational, Academic, And Well-Being Characteristics Of First-Generation And Continuing-Generation College Students, Christopher L. Thomas, Staci Zolkoski
Journal of Research Initiatives
Prior research has noted differences in motivational, academic, and well-being factors between first-generation and continuing-education students. However, past investigations have primarily overlooked the interactive influence of protective and risk factors when comparing the characteristics of first-generation and continuing-education students. Thus, the current study adopted a multivariate approach to gain a more nuanced understanding of the influence of generational status on students' self-regulated learning capabilities, academic anxiety, sense of belonging, academic barriers, mental health concerns, and satisfaction with life. University students (N = 432, 67.46% Caucasian, 87.55% female, Age = 28.10 ± 9.46) completed the Cognitive Test Anxiety Scale-2nd …
On Image Response Regression With High-Dimensional Data,
2023
University of Windsor
On Image Response Regression With High-Dimensional Data, Noah Fuerth
Major Papers
A recent issue in statistical analysis is modelling data when the effect variable
changes at different locations. This can be difficult to accomplish when the dimensions
of the covariates are very high, and when the domain of the varying coefficient
functions of predictors are not necessarily regular. This research paper will investigate
a method to overcome these challenges by approximating the varying coefficient
functions using bivariate splines. We do this by splitting the domain of the varying
coefficient functions into a number of triangles, and build the bivariate spline functions
based on this triangulation. This major paper will outline detailed …
Characterization Of Boreal-Arctic Vegetation Growth Phases And Active Soil Layer Dynamics In The High-Latitudes Of North America: A Study Combining Multi-Year In Situ And Satellite-Based Observations,
2023
The Graduate Center, City University of New York
Characterization Of Boreal-Arctic Vegetation Growth Phases And Active Soil Layer Dynamics In The High-Latitudes Of North America: A Study Combining Multi-Year In Situ And Satellite-Based Observations, Michael G. Brown
Dissertations, Theses, and Capstone Projects
This dissertation examined the seasonal freeze/thaw activity in boreal-Arctic soils and vegetation physiology in Alaska, USA and Alberta, Canada, using in situ environmental measurements and passive microwave satellite observations. The boreal-Arctic high-latitudes have been experiencing ecosystem changes more rapidly in comparison to the rest of Earth due to the presently warming climatic conditions having a magnified effect over Polar Regions. Currently, the boreal-Arctic is a carbon sink; however, recent studies indicate a shift over the next century to become a carbon source. High-latitude vegetation and cold soil dynamics are influenced by climatic shifts and are largely responsible for the regions …
Statistical And Biological Analyses Of Acoustic Signals In Estrildid Finches,
2023
The Graduate Center, City University of New York
Statistical And Biological Analyses Of Acoustic Signals In Estrildid Finches, Moises Rivera
Dissertations, Theses, and Capstone Projects
Acoustic communication is a process that involves auditory perception and signal processing. Discrimination and recognition further require cognitive processes and supporting mechanisms in order to successfully identify and appropriately respond to signal senders. Although acoustic communication is common across birds, classical research has largely disregarded the perceptual abilities of perinatal altricial taxa. Chapter 1 reviews the literature of perinatal acoustic stimulation in birds, highlighting the disproportionate focus on precocial birds (e.g., chickens, ducks, quails). The long-held belief that altricial birds were incapable of acoustic perception in ovo was only recently overturned, as researchers began to find behavioral and physiological evidence …
Utilizing New Technologies To Measure Therapy Effectiveness For Mental And Physical Health,
2023
University of San Diego
Utilizing New Technologies To Measure Therapy Effectiveness For Mental And Physical Health, Jonathan Ossie
Dissertations
Mental health is quickly becoming a major policy concern, with recent data reporting increasing and disproportionately worse mental health outcomes, including anxiety, depression, increased substance abuse, and elevated suicidal ideation. One specific population that is especially high risk for these issues is the military community because military conflict, deployment stressors, and combat exposure contribute to the risk of mental health problems.
Although several pharmacological approaches have been employed to combat this epidemic, their efficacy is mixed at best, which has led to novel nonpharmacological approaches. One such approach is Operation Surf, a nonprofit that provides nature-based programs advocating the restorative …
Comparing Hierarchical Data Structures And Hierarchical Data Analysis,
2023
Loyola Marymount University
Comparing Hierarchical Data Structures And Hierarchical Data Analysis, Halley Jeanne Dante, Robert Rovetti
Honors Thesis
Real world data is inherently noisy and data analysis can be especially complex when noise is compounded in hierarchical and multilevel data structures. Since such data structures can be described using multiple approaches, the way data is collapsed and grouped within these structures can influence its resulting interpretation and analyses. To avoid discrepancies in data collapsing and grouping, multiple statistical approaches have been developed specifically to analyze multilevel data structures. Examples of multilevel statistical models are the two-factor ANOVA and the general linear model with repeated-measures (GLM-RR) which is typically used in the context of looking at change over time. …
A Probabilistic Exploration Of Food Supplementation And Assistance,
2023
Murray State University
A Probabilistic Exploration Of Food Supplementation And Assistance, Logan Mattingly
Honors College Theses
Food insecurity is a stark threat that grips our country and affects households throughout our country. Dietary insufficiency manifests itself in ways that affect health and public safety. According to researchers, individuals who suffer from food insecurity have a higher risk of aggression, anxiety, suicide ideation and depression. These problems tend to occur unequally distributed among those households with lower income. In this work, an exploratory analysis within these data sets will be performed to examine the socio-economic, biographical, nutritional, and geographical principal components of food insecurity among survey participants and how the US Supplemental Nutrition Assistance Program (SNAP) effects …
Multidimensional Investigation Of Tennessee’S Urban Forest,
2023
University of Tennessee, Knoxville
Multidimensional Investigation Of Tennessee’S Urban Forest, Jillian L. Gorrell
Doctoral Dissertations
Preserving existing trees in urban areas and properly cultivating urban forest conservation and management opportunities is valuable to the ever-growing urban environment and necessary for creating optimal experiences and educational tools to meet the needs of increasing urban populations. This dissertation contains studies investigating several facets of the urban forest, including environmental effects of deforestation and urbanization, tree equity, and urban forest facility management and accessibility. Community education and outreach at arboreta about the importance of the tree canopy can help promote environmental stewardship. A digital questionnaire was electronically distributed to representatives of arboreta certified through the Tennessee Division of …
The Last Drought Frontier: Building A Drought Index For The State Of Alaska,
2023
University of Nebraska-Lincoln
The Last Drought Frontier: Building A Drought Index For The State Of Alaska, Olivia Campbell
School of Natural Resources: Dissertations, Theses, and Student Research
Drought is characterized by periods of below average precipitation. There are five major types of drought recognized in the literature: meteorological, hydrological, agricultural, socioeconomic, and ecological. A relatively new concept in the drought literature is “snow drought.” A key part of the definition of drought is that it is not always accompanied by extreme heat. This means drought can occur even in cold climates, cold seasons, and higher latitudes and altitudes, like Alaska. Drought is a natural part of climate variability, but Alaska’s climate is changing faster than any other state in the United States. Alaska is no stranger to …
Employee Attrition: Analyzing Factors Influencing Job Satisfaction Of Ibm Data Scientists,
2023
Kennesaw State University
Employee Attrition: Analyzing Factors Influencing Job Satisfaction Of Ibm Data Scientists, Graham Nash
Symposium of Student Scholars
Employee attrition is a relevant issue that every business employer must consider when gauging the effectiveness of their employees. Whether or not an employee chooses to leave their job can come from a multitude of factors. As a result, employers need to develop methods in which they can measure attrition by calculating the several qualities of their employees. Factors like their age, years with the company, which department they work in, their level of education, their job role, and even their marital status are all considered by employers to assist in predicting employee attrition. This project will be analyzing a …
Fraud Pattern Detection For Nft Markets,
2023
Southern Methodist University
Fraud Pattern Detection For Nft Markets, Andrew Leppla, Jorge Olmos, Jaideep Lamba
SMU Data Science Review
Non-Fungible Tokens (NFTs) enable ownership and transfer of digital assets using blockchain technology. As a relatively new financial asset class, NFTs lack robust oversight and regulations. These conditions create an environment that is susceptible to fraudulent activity and market manipulation schemes. This study examines the buyer-seller network transactional data from some of the most popular NFT marketplaces (e.g., AtomicHub, OpenSea) to identify and predict fraudulent activity. To accomplish this goal multiple features such as price, volume, and network metrics were extracted from NFT transactional data. These were fed into a Multiple-Scale Convolutional Neural Network that predicts suspected fraudulent activity based …
Application Of Gaussian Mixture Models To Simulated Additive Manufacturing,
2023
South Dakota
Application Of Gaussian Mixture Models To Simulated Additive Manufacturing, Jason Hasse, Semhar Michael, Anamika Prasad
SDSU Data Science Symposium
Additive manufacturing (AM) is the process of building components through an iterative process of adding material in specific designs. AM has a wide range of process parameters that influence the quality of the component. This work applies Gaussian mixture models to detect clusters of similar stress values within and across components manufactured with varying process parameters. Further, a mixture of regression models is considered to simultaneously find groups and also fit regression within each group. The results are compared with a previous naive approach.