Open Access. Powered by Scholars. Published by Universities.®

Applied Statistics Commons

Open Access. Powered by Scholars. Published by Universities.®

3,498 Full-Text Articles 4,871 Authors 2,591,145 Downloads 166 Institutions

All Articles in Applied Statistics

Faceted Search

3,498 full-text articles. Page 1 of 107.

Session 6: The Size-Biased Lognormal Mixture With The Entropy Regularized Algorithm, Tatjana Miljkovic, Taehan Bae 2024 Miami University - Oxford

Session 6: The Size-Biased Lognormal Mixture With The Entropy Regularized Algorithm, Tatjana Miljkovic, Taehan Bae

SDSU Data Science Symposium

A size-biased left-truncated Lognormal (SB-ltLN) mixture is proposed as a robust alternative to the Erlang mixture for modeling left-truncated insurance losses with a heavy tail. The weak denseness property of the weighted Lognormal mixture is studied along with the tail behavior. Explicit analytical solutions are derived for moments and Tail Value at Risk based on the proposed model. An extension of the regularized expectation–maximization (REM) algorithm with Shannon's entropy weights (ewREM) is introduced for parameter estimation and variability assessment. The left-truncated internal fraud data set from the Operational Riskdata eXchange is used to illustrate applications of the proposed model. Finally, …


Session 6: Model-Based Clustering Analysis On The Spatial-Temporal And Intensity Patterns Of Tornadoes, Yana Melnykov, Yingying Zhang, Rong Zheng 2024 University of Alabama - Tuscaloosa

Session 6: Model-Based Clustering Analysis On The Spatial-Temporal And Intensity Patterns Of Tornadoes, Yana Melnykov, Yingying Zhang, Rong Zheng

SDSU Data Science Symposium

Tornadoes are one of the nature’s most violent windstorms that can occur all over the world except Antarctica. Previous scientific efforts were spent on studying this nature hazard from facets such as: genesis, dynamics, detection, forecasting, warning, measuring, and assessing. While we want to model the tornado datasets by using modern sophisticated statistical and computational techniques. The goal of the paper is developing novel finite mixture models and performing clustering analysis on the spatial-temporal and intensity patterns of the tornadoes. To analyze the tornado dataset, we firstly try a Gaussian distribution with the mean vector and variance-covariance matrix represented as …


A Causal Inference Approach For Spike Train Interactions, Zach Saccomano 2024 The Graduate Center, City University of New York

A Causal Inference Approach For Spike Train Interactions, Zach Saccomano

Dissertations, Theses, and Capstone Projects

Since the 1960s, neuroscientists have worked on the problem of estimating synaptic properties, such as connectivity and strength, from simultaneously recorded spike trains. Recent years have seen renewed interest in the problem coinciding with rapid advances in experimental technologies, including an approximate exponential increase in the number of neurons that can be recorded in parallel and perturbation techniques such as optogenetics that can be used to calibrate and validate causal hypotheses about functional connectivity. This thesis presents a mathematical examination of synaptic inference from two perspectives: (1) using in vivo data and biophysical models, we ask in what cases the …


Statistical Consulting In Academia: A Review, Ke Xiao 2024 University of Windsor

Statistical Consulting In Academia: A Review, Ke Xiao

Major Papers

This paper reviews the state of statistical consulting in academia by performing a literature review on this topic in chapters 1 and 2. Chapter 1 overviews general aspects of statistical consulting and types of centers that conduct such services in academia. In Chapter 2 we summarise the literature about the common logistics and processes for conducting statistical consulting in academia. In Chapters 3 and 4, we analyze data on statistical consulting centers for the largest 100 universities in the USA. We also review the literature on the future of statistical consulting in academia in the era of big data and …


Formulating An Efficient Statistical Test Using The Goodness Of Fit Approach With Applications To Real-Life Data, S. A. Qaid, S. E. Abo Youssef Prof., Mahmoud Mansour 2024 Department of Mathematics, Faculty of Education, Abyan University, Abyan, Yemen

Formulating An Efficient Statistical Test Using The Goodness Of Fit Approach With Applications To Real-Life Data, S. A. Qaid, S. E. Abo Youssef Prof., Mahmoud Mansour

Basic Science Engineering

Statistical tests are very important for researchers to make decisions. In particular, when the tests are non-parametric, they are of greater importance because they can be applied to a wide range of data sets regardless of knowing the distribution of these data. Researchers are therefore racing to obtain efficient tests for making good decisions based on the results of these tests. In this study, NBU (2)L was used based on the goodness of fit approach to present an efficient statistical test. The efficiency of the proposed test was computed, and the results were compared to those of other tests. Critical …


Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner 2024 Michigan Technological University

Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner

Dissertations, Master's Theses and Master's Reports

The unifying theme of this thesis is the characterization of “perfect randomness,” i.e., independent and identically distributed (IID) stochastic processes as these are applied in physical science. Two specific and mathematically distinct applications are chosen: (i) Radar and optical polarimetry; (ii) Analysis of time series in meteorology. In (i), IID process of a special kind, namely, with a distribution defined by symmetry, is used to link its multivariate Gaussian density to uniformity on the Poincaré sphere. This “statistical ellipsometry” approach is then used to relate polarimetric mismatches or imbalances to ellipsometric variables and suitably chosen cross-correlation measures. In (ii), recently …


Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen 2024 Wilfrid Laurier University

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen

Theses and Dissertations (Comprehensive)

The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …


Measuring The Performance Of Sdgs In Provincial Level Using Regional Sustainable Development Index, Nurafiza Thamrin, Ika Yuni Wulansari, Puguh Bodro Irawan 2023 BPS - Statistics Solok Regency

Measuring The Performance Of Sdgs In Provincial Level Using Regional Sustainable Development Index, Nurafiza Thamrin, Ika Yuni Wulansari, Puguh Bodro Irawan

Journal of Environmental Science and Sustainable Development

Measuring the national and sub-national progress in achieving such globally adopted development agendas as Sustainable Development Goals (SDGs) is particularly challenging due to data availability and compatibility of indicators to measure SDGs, especially in Indonesia. This paper attempts to measure the performance of sustainable development at the regional level in Indonesia by newly constructing a multidimensional composite index called the Regional Sustainable Development Index (RSDI). RSDI comprises four dimensions, covering comprehensive economic, social, environmental, and governance indicators. By applying factor analysis, the paper assesses the uncertainty of RSDI and the sensitivity of its composing indicators, then further investigates the relationship …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia 2023 Brigham Young University

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Ohio Recovery Housing: Resident Risk And Outcomes Assessment, Elyjiah Potter, Bivin Sadler 2023 Southern Methodist University

Ohio Recovery Housing: Resident Risk And Outcomes Assessment, Elyjiah Potter, Bivin Sadler

SMU Data Science Review

Addiction and substance abuse disorder is a significant problem in the United States. Over the past two decades, the United States has faced a boom in substance abuse, which has resulted in an increase in death and disruption of families across the nation. The State of Ohio has been particularly hard hit by the crisis, with overdose rates nearly doubling the national average. Established in the mid 1970’s Sober Living Housing is an alcohol and substance use recovery model emphasizing personal responsibility, sober living, and community support. This model has been adopted by the Ohio Recovery Housing organization, which seeks …


Differentiation Of Human, Dog, And Cat Hair Fibers Using Dart Tofms And Machine Learning, Laura Ahumada, Erin R. McClure-Price, Chad Kwong, Edgard O. Espinoza, John Santerre 2023 Southern Methodist University

Differentiation Of Human, Dog, And Cat Hair Fibers Using Dart Tofms And Machine Learning, Laura Ahumada, Erin R. Mcclure-Price, Chad Kwong, Edgard O. Espinoza, John Santerre

SMU Data Science Review

Hair is found in over 90% of crime scenes and has long been analyzed as trace evidence. However, recent reviews of traditional hair fiber analysis techniques, primarily morphological examination, have cast doubt on its reliability. To address these concerns, this study employed machine learning algorithms, specifically Linear Discriminant Analysis (LDA) and Random Forest, on Direct Analysis in Real Time time-of-flight mass spectra collected from human, cat, and dog hair samples. The objective was to develop a chemistry- and statistics-based classification method for unbiased taxonomic identification of hair. The results of the study showed that LDA and Random Forest were highly …


Is The Declining Birthrate Really An Issue For The Economy?, Harsh Ramesh Pednekar, Theodore Lee, Darrion Chin 2023 Embry-Riddle Aeronautical University

Is The Declining Birthrate Really An Issue For The Economy?, Harsh Ramesh Pednekar, Theodore Lee, Darrion Chin

Introduction to Research Methods RSCH 202

This study aims to explore the complex implications of declining birth rates on the economy, focusing on GDP per capita as a crucial metric, and aims to uncover both potential opportunities and challenges stemming from this demographic transformation using regression analysis. Using a quantitative methodology and secondary data from OECD.stat, World Population Review, and World Bank, the study explores the relationship between declining birth rates and economic impacts. GDP per capita serves as an essential dependent variable, and it accounts for control variables such as labour force participation, literacy, and education levels, child dependence ratio, and physical capital. Past studies …


Parameter Estimation For Patient Enrollment In Clinical Trials, Junyan Liu 2023 William & Mary

Parameter Estimation For Patient Enrollment In Clinical Trials, Junyan Liu

Undergraduate Honors Theses

In this paper, we study the Poisson-gamma model for recruitment time in clinical trials. We proved several properties of this model that match our intuitions from a reliability perspective, did simulations on this model, and used different optimization methods to estimate the parameters. Although the behaviors of the optimization methods were unfavorable and unstable, we identified certain conditions and provided potential explanations for this phenomenon and further insights into the Poisson-gamma model.


The Impact Of Neighborhood Socioeconomic Disadvantage On Operative Outcomes After Single-Level Lumbar Fusion, Grace Y. Ng, Ritesh Karsalia, Ryan S. Gallagher, Austin J. Borja, Jianbo Na, Scott McClintock, Neil R. Malhotra 2023 Harvard Medical School

The Impact Of Neighborhood Socioeconomic Disadvantage On Operative Outcomes After Single-Level Lumbar Fusion, Grace Y. Ng, Ritesh Karsalia, Ryan S. Gallagher, Austin J. Borja, Jianbo Na, Scott Mcclintock, Neil R. Malhotra

Mathematics Faculty Publications

INTRODUCTION: The relationship between socioeconomic status and neurosurgical outcomes has been investigated with respect to insurance status or median household income, but few studies have considered more comprehensive measures of socioeconomic status. This study examines the relationship between Area Deprivation Index (ADI), a comprehensive measure of neighborhood socioeconomic disadvantage, and short-term postoperative outcomes after lumbar fusion surgery. METHODS: 1861 adult patients undergoing single-level, posterior-only lumbar fusion at a single, multihospital academic medical center were retrospectively enrolled. An ADI matching protocol was used to identify each patient's 9-digit zip code and the zip code-associated ADI data. Primary outcomes included 30- and …


Exploration And Statistical Modeling Of Profit, Caleb Gibson 2023 East Tennessee State University

Exploration And Statistical Modeling Of Profit, Caleb Gibson

Undergraduate Honors Theses

For any company involved in sales, maximization of profit is the driving force that guides all decision-making. Many factors can influence how profitable a company can be, including external factors like changes in inflation or consumer demand or internal factors like pricing and product cost. Understanding specific trends in one's own internal data, a company can readily identify problem areas or potential growth opportunities to help increase profitability.

In this discussion, we use an extensive data set to examine how a company might analyze their own data to identify potential changes the company might investigate to drive better performance. Based …


Comparative Analysis Of Teacher Effects Parameters In Models Used For Assessing School Effectiveness: Value-Added Models & Persistence, Merlin J. Kamgue 2023 University of Arkansas-Fayetteville

Comparative Analysis Of Teacher Effects Parameters In Models Used For Assessing School Effectiveness: Value-Added Models & Persistence, Merlin J. Kamgue

Graduate Theses and Dissertations

Longitudinal measures for students have become increasingly popular to estimate the effects of individual teachers and schools. Value-added models are one of the approaches using longitudinal data to evaluate teachers and schools. In the value-added model (VAM) literature, many statistical approaches have been developed and used to estimate teacher or school effects on student learning. This study opted to use a Bayesian multivariate model for evaluating teacher effects. The generalized persistence models can handle longitudinal data, not vertically scaled, allowing for a below-par teacher’s effects correlation across test administrations. This study first generated longitudinal students’ test score data and used …


Bayesian Learning Of Spatiotemporal Source Distribution For Beached Microplastic In The Gulf Of Mexico, David Pojunas 2023 University of Arkansas-Fayetteville

Bayesian Learning Of Spatiotemporal Source Distribution For Beached Microplastic In The Gulf Of Mexico, David Pojunas

Graduate Theses and Dissertations

Over the last several decades, plastic waste has gradually accumulated while slowly degrading in terrestrial and oceanic environments. Recently, there has been an increased effort to identify the possible sources of plastic to understand how they affect vulnerable beaches. This issue is of particular concern in the Gulf of Mexico due to the presence of oil, natural gas, and plastic production. In this thesis, we expand upon existing Bayesian plastic attribution models and develop a rigorous statistical framework to map observed beached microplastics to their sources. Within this framework, we combine Lagrangian backtracking simulations of floating particles using nurdle beaching …


Analyses Of Effect Indices Across Single-Case Research Designs In Counseling, Cian L. Brown 2023 University of Arkansas-Fayetteville

Analyses Of Effect Indices Across Single-Case Research Designs In Counseling, Cian L. Brown

Graduate Theses and Dissertations

Single case research design (SCRD) is a common methodology used across clinical disciplines to determine treatments effectiveness by comparing treatment conditions to baseline conditions in individual cases, usually among researchers working with smaller samples. Although popular within behavioral disciplines such as special education and behavioral analysis, studies have begun to emerge in counseling. However, guidance and current understanding of the use of SCRD in counseling is limited. A content analysis of counseling journals from 2003 to 2014 yielded only 7 studies using SCRD. In 2015, the flagship counseling journal, Journal of Counseling and Development, published a special issue on the …


Foundations Of Memory Capacity In Models Of Neural Cognition, Chandradeep Chowdhury 2023 California Polytechnic State University, San Luis Obispo

Foundations Of Memory Capacity In Models Of Neural Cognition, Chandradeep Chowdhury

Master's Theses

A central problem in neuroscience is to understand how memories are formed as a result of the activities of neurons. Valiant’s neuroidal model attempted to address this question by modeling the brain as a random graph and memories as subgraphs within that graph. However the question of memory capacity within that model has not been explored: how many memories can the brain hold? Valiant introduced the concept of interference between memories as the defining factor for capacity; excessive interference signals the model has reached capacity. Since then, exploration of capacity has been limited, but recent investigations have delved into the …


Data Quality Checks: Implementation With Popular Data Collection Crowdsourcing Platforms, James Down, Gregory Balkcom, Kristine Duncan, Ngan (An) Truong, Andrew Lewis 2023 Kennesaw State University

Data Quality Checks: Implementation With Popular Data Collection Crowdsourcing Platforms, James Down, Gregory Balkcom, Kristine Duncan, Ngan (An) Truong, Andrew Lewis

Symposium of Student Scholars

The utilization of online crowdsourcing platforms for data collection has increased over the past two decades in the field of public health due to the ease of use, the cost-saving benefits, the speed of the data collection process, and the accessibility of a potentially true representative population. Although these platforms offer many advantages to researchers, significant drawbacks exist, such as poor data quality, that threaten the reliability and validity of the study. Previous studies have examined data quality concerns, but differences in results arise due to variations in study designs, disciplinary contexts, and the platforms being investigated. Therefore, this study …


Digital Commons powered by bepress