On Superoscillations And Supershifts In Several Variables, 2022 Chapman University

#### On Superoscillations And Supershifts In Several Variables, Yakir Aharonov, Fabrizio Colombo, Andrew N. Jordan, Irene Sabadini, Tomer Shushi, Daniele C. Struppa, Jeff Tollaksen

*Mathematics, Physics, and Computer Science Faculty Articles and Research*

The aim of this paper is to study a class of superoscillatory functions in several variables, removing some restrictions on the functions that we introduced in a previous paper. Since the tools that we used with our approach are not common knowledge we will give detailed proof for the case of two variables. The results proved for superoscillatory functions in several variables can be further extended to supershifts in several variables.

Monitoring Fast Superconducting Qubit Dynamics Using A Neural Network, 2022 University of California - Berkeley

#### Monitoring Fast Superconducting Qubit Dynamics Using A Neural Network, G. Koolstra, N. Stevenson, S. Barzili, L. Burns, K. Siva, S. Greenfield, W. Livingston, A. Hashim, R. K. Naik, J. M. Kreikebaum, K. P. O'Brien, D. I. Santiago, Justin Dressel, I. Siddiqi

*Mathematics, Physics, and Computer Science Faculty Articles and Research*

Weak measurements of a superconducting qubit produce noisy voltage signals that are weakly correlated with the qubit state. To recover individual quantum trajectories from these noisy signals, traditional methods require slow qubit dynamics and substantial prior information in the form of calibration experiments. Monitoring rapid qubit dynamics, e.g., during quantum gates, requires more complicated methods with increased demand for prior information. Here, we experimentally demonstrate an alternative method for accurately tracking rapidly driven superconducting qubit trajectories that uses a long short-term memory (LSTM) artificial neural network with minimal prior information. Despite few training assumptions, the LSTM produces trajectories that include …

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, 2022 Louisiana State University

#### Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

*LSU Doctoral Dissertations*

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …

What Is A Photon? Foundations Of Quantum Field Theory, 2022 Utah State University

#### What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre

*All Physics Faculty Publications*

This is a brief, informal, and relatively low-level course on the foundations of quantum field theory. The prerequisites are undergraduate courses in quantum mechanics and electromagnetism.

Methodologies For Quantum Circuit And Algorithm Design At Low And High Levels, 2022 Portland State University

#### Methodologies For Quantum Circuit And Algorithm Design At Low And High Levels, Edison Tsai

*Dissertations and Theses*

Although the concept of quantum computing has existed for decades, the technology needed to successfully implement a quantum computing system has not yet reached the level of sophistication, reliability, and scalability necessary for commercial viability until very recently. Significant progress on this front was made in the past few years, with IBM planning to create a 1000-qubit chip by the end of 2023, and Google already claiming to have achieved quantum supremacy. Other major industry players such as Intel and Microsoft have also invested significant amounts of resources into quantum computing research.

Any viable computing system requires both hardware and …

Quantum Key Distribution Simulation Using Entangled Bell States, 2022 California Polytechnic State University, San Luis Obispo

#### Quantum Key Distribution Simulation Using Entangled Bell States, Nayana Tiwari

*Physics*

To communicate information securely, the sender and recipient of the information need to have a shared, secret key. Quantum key distribution (QKD) is a proposed method for this and takes advantage of the laws of quantum mechanics. The users, Alice and Bob, exchange quantum information in the form of entangled qubits over a quantum channel as well as exchanging measurement information over a classical channel. A successful QKD algorithm will ensure that when an eavesdropper has access to both the quantum and classical information channels, they cannot deduce the key, and they will be detected by the key generators. This …

Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, 2022 California Polytechnic State University, San Luis Obispo

#### Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar

*Physics*

The rising interest in quantum computing has led to new quantum systems being developed and researched. Among these are trapped neutral atoms which have several desirable features and may be configured and operated on using lasers in an optical lattice. This work describes the development of a new data acquisition system for use in tuning lasers near the precise hyperfine transition frequencies of Rb 87 atoms, a crucial step in the functionality of a neutral atom trap. This improves on previous implementations that were deprecated and limited in laser frequency sweep range. Integration into the experiment was accomplished using an …

Two-Current Transition Amplitudes With Two-Body Final States, 2022 Old Dominion University

#### Two-Current Transition Amplitudes With Two-Body Final States, Keegan H. Sherman, Feliipe G. Ortega-Gama, Raúl A. Briceño, Andrew W. Jackura

*Physics Faculty Publications*

We derive the on-shell form of amplitudes containing two external currents with a single hadron in the initial state and two hadrons in the final state, denoted as 1 + J → 2 + J . This class of amplitude is relevant in precision tests of the Standard Model as well as for exploring the structure of excited states in the QCD spectrum. We present a model-independent description of the amplitudes where we sum to all orders in the strong interaction. From this analytic form we are able to extract transition and elastic resonance form factors consistent with previous work …

Lifetime Measurement Of The Xi_C^+ Using Belle Ii Monte Carlo, 2022 University of Mississippi

#### Lifetime Measurement Of The Xi_C^+ Using Belle Ii Monte Carlo, Paul Gebeline

*Honors Theses*

This analysis uses simulated data from the Belle II experiment to measure the lifetime of the Xi_c^+ baryon. Three different decay modes are investigated to explore the feasibility and accuracy of such measurements at Belle II. The Xi_c^+ lifetime is measured using one of these modes after reducing backgrounds from sources other than the decay of interest. The final result is 464 +/- 15 fs, which is consistent with the expected result of 442 fs within uncertainty. This result shows that Belle II can make competitive measurements of particle properties and decays.

Approaching Quantum-Limited Electrometry In The Single-Photon Regime, 2022 Dartmouth College

#### Approaching Quantum-Limited Electrometry In The Single-Photon Regime, Sisira Kanhirathingal

*Dartmouth College Ph.D Dissertations*

Mesoscopic quantum systems currently serve as essential building blocks in many quantum information and metrology devices. This thesis investigates the potential of quantum-limited detection in a mesoscopic electrometer named the cavity-embedded Cooper pair transistor (cCPT). As one application, this charge detector can act as the basis for an optomechanical system in the single-photon strong coupling regime. The realization of this scheme would entail near quantum-limited, ultra-sensitive electrometry at the single-photon level, the feasibility of which is studied at length in this thesis.

On the one hand, we approach this question using a fundamental, first-principles study, where an operator scattering model …

Control And Calibration Strategies For Quantum Simulation, 2022 University of Tennessee, Knoxville

#### Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys

*Doctoral Dissertations*

The modeling and prediction of quantum mechanical phenomena is key to the continued development of chemical, material, and information sciences. However, classical computers are fundamentally limited in their ability to model most quantum effects. An alternative route is through quantum simulation, where a programmable quantum device is used to emulate the phenomena of an otherwise distinct physical system. Unfortunately, there are a number of challenges preventing the widespread application of quantum simulation arising from the imperfect construction and operation of quantum simulators. Mitigating or eliminating deleterious effects is critical for using quantum simulation for scientific discovery. This dissertation develops strategies …

Co-Planar Waveguides For Microwave Atom Chips, 2022 William & Mary

#### Co-Planar Waveguides For Microwave Atom Chips, Morgan Logsdon

*Undergraduate Honors Theses*

This thesis describes research to develop co-planar waveguides (CPW) for coupling microwaves from mm-scale coaxial cables into 50 μm-scale microstrip transmission lines of a microwave atom chip. This new atom chip confines and manipulates atoms using spin-specific microwave AC Zeeman potentials and is particularly well suited for trapped atom interferometry. The coaxial-to-microstrip coupler scheme uses a focused CPW (FCPW) that shrinks the microwave field mode while maintaining a constant 50 Ω impedance for optimal power coupling. The FCPW development includes the simulation, design, fabrication, and testing of multiple CPW and microstrip prototypes using aluminum nitride substrates. Notably, the FCPW approach …

Crystal Growth And Property Tuning Of Layered Magnetic Topological Semimetals, 2022 University of Arkansas, Fayetteville

#### Crystal Growth And Property Tuning Of Layered Magnetic Topological Semimetals, Krishna Pandey

*Graduate Theses and Dissertations*

The demand for energy-efficient devices has been growing rapidly due to the need for data-driven technologies and the global energy crisis. As device size approaches the atomic scale, the miniaturization of electronic devices may stop in the near future unless fundamentally new materials or device concepts are developed. The emergent topological materials with exotic properties show remarkable robustness against crystal lattice defects, which are promising for next-generation technology. These materials host exotic properties such as high mobility, large magnetoresistance, chiral anomaly, and surface Fermi arcs, etc. Among various topological materials, the ZrSiS-family materials exhibit two types of Dirac states, which …

Quantum Federated Learning: Training Hybrid Neural Networks Collaboratively, 2022 William & Mary

#### Quantum Federated Learning: Training Hybrid Neural Networks Collaboratively, Anneliese Brei

*Undergraduate Honors Theses*

This thesis explores basic concepts of machine learning, neural networks, federated learning, and quantum computing in an effort to better understand Quantum Machine Learning, an emerging field of research. We propose Quantum Federated Learning (QFL), a schema for collaborative distributed learning that maintains privacy and low communication costs. We demonstrate the QFL framework and local and global update algorithms with implementations that utilize TensorFlow Quantum libraries. Our experiments test the effectiveness of frameworks of different sizes. We also test the effect of changing the number of training cycles and changing distribution of training data. This thesis serves as a synoptic …

Unconventional Computation Including Quantum Computation, 2022 University of Tennessee, Knoxville

#### Unconventional Computation Including Quantum Computation, Bruce J. Maclennan

*Faculty Publications and Other Works -- EECS*

Unconventional computation (or non-standard computation) refers to the use of non-traditional technologies and computing paradigms. As we approach the limits of Moore’s Law, progress in computation will depend on going beyond binary electronics and on exploring new paradigms and technologies for information processing and control. This book surveys some topics relevant to unconventional computation, including the definition of unconventional computations, the physics of computation, quantum computation, DNA and molecular computation, and analog computation. This book is the content of a course taught at UTK.

Experimental Demonstration Of Continuous Quantum Error Correction, 2022 University of California, Berkeley

#### Experimental Demonstration Of Continuous Quantum Error Correction, William P. Livingston, Machiel S. Blok, Emmanuel Flurin, Justin Dressel, Andrew N. Jordan, Irfan Siddiqi

*Mathematics, Physics, and Computer Science Faculty Articles and Research*

The storage and processing of quantum information are susceptible to external noise, resulting in computational errors. A powerful method to suppress these effects is quantum error correction. Typically, quantum error correction is executed in discrete rounds, using entangling gates and projective measurement on ancillary qubits to complete each round of error correction. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancillary qubits, and their associated errors. An FPGA controller actively corrects errors as they are detected, achieving an average bit-flip detection efficiency of up to 91%. Furthermore, …

Advanced Communication And Sensing Protocols Using Twisted Light And Engineered Quantum Statistics, 2022 Louisiana State University and Agricultural and Mechanical College

#### Advanced Communication And Sensing Protocols Using Twisted Light And Engineered Quantum Statistics, Michelle L. Lollie

*LSU Doctoral Dissertations*

Advanced performance of modern technology at a fundamental physical level is driving new innovations in communication, sensing capability, and information processing. Key to this improvement is the ability to harness the power of physical phenomena at the quantum mechanical level, where light and light-matter interactions produce technological advancement not realizable by classical means. Theoretical investigation into quantum computing, sensing capability beyond classical limits, and quantum information has prompted experimental work to bring state-of-the-art quantum systems to the forefront for commercial use. This dissertation contributes to the latter portion of the work. A set of preliminaries is included highlighting pertinent physical …

Estimation Of Pure B Power In Polarized Cmb Data Via Gibbs Sampling., 2022 University of Richmond

#### Estimation Of Pure B Power In Polarized Cmb Data Via Gibbs Sampling., Joseph Sterling

*Honors Theses*

In the search for effective processes to estimate E and B spectra from polarized data, Gibbs Sampling has proven to be a powerful method. In the search for B modes, it is essential to avoid a false positive detection due to contamination from the larger E component. It is therefore of interest to combine Gibbs sampling with methods to “purify” the B modes, ensuring that a B-mode detection is robust. This goal can be achieved by compelling the Gibbs Sampler to estimate a pure B spectrum. The method we chose to implement involves an artificially inflated E spectrum, which “forces” …

Partial Muon Capture Rates In A = 3 And A = 6 Nuclei With Chiral Effective Field Theory, 2022 Washington University in St. Louis

#### Partial Muon Capture Rates In A = 3 And A = 6 Nuclei With Chiral Effective Field Theory, G. B. King, S. Pastore, M. Piarulli, Rocco Schiavilla

*Physics Faculty Publications*

Searches for neutrinoless double-β decay rates are crucial in addressing questions within fundamental symmetries and neutrino physics. The rates of these decays depend not only on unknown parameters associated with neutrinos, but also on nuclear properties. In order to reliably extract information about the neutrino, one needs an accurate treatment of the complex many-body dynamics of the nucleus. Neutrinoless double-β decays take place at momentum transfers on the order of **100MeV /c** and require both nuclear electroweak vector and axial current matrix elements. Muon capture, a process in the same momentum transfer regime, has readily available experimental data to validate …

Characterization Of High Mobility Channels For Use In Quantum Computing Devices, 2022 Portland State University

#### Characterization Of High Mobility Channels For Use In Quantum Computing Devices, Payam Amin

*Dissertations and Theses*

Quantum computing promises computation that is fundamentally beyond the reach of classical computers. For the realization of a full-scale quantum computer, millions of quantum bits need to be fabricated on an integrated circuit and operated at cryogenic temperatures. Silicon and silicon-germanium based electron spin quantum bits have the advantage of leveraging decades of semiconductor industry knowledge for high volume manufacturability.

During the process development of any semiconductor device, material characterization is essential to understand and improve the process. Transmission electron microscopy is the only technique that could offer localized high spatial resolution characterization. In this work we have introduced two …