Flexible Dye-Sensitized Solar Cells Assisted With Lead-Free Perovskite Halide,
2022
Marshall University
Flexible Dye-Sensitized Solar Cells Assisted With Lead-Free Perovskite Halide, Judy Fan
Physics Faculty Research
Dye-sensitized solar cells (DSSCs) have shown promising alternative to Si-based counterparts due to low-cost, abundant raw materials, and non-vacuum processing. Here, we report a solution-based process to create flexible DSSCs on aluminum foils. Mesoporous TiO2 electrode was directly deposited on Al foil through spin casting. After post-thermal annealing, the resultant samples render optical smooth, crack-free, and large nanocrystalline thin films. The as-prepared double-layer porous TiO2 thin film was incorporated with a porphyrin dye followed by a perovskite halide salt Cs2SnI6, as the hole transport material, replacing liquid electrolyte. A transparent conducting plastic sheet was …
Development Of Advanced Machine Learning Models For Analysis Of Plutonium Surrogate Optical Emission Spectra,
2022
Air Force Institute of Technology
Development Of Advanced Machine Learning Models For Analysis Of Plutonium Surrogate Optical Emission Spectra, Ashwin P. Rao, Phillip R. Jenkins, John D. Auxier Ii, Michael B. Shattan, Anil Patnaik
Faculty Publications
This work investigates and applies machine learning paradigms seldom seen in analytical spectroscopy for quantification of gallium in cerium matrices via processing of laser-plasma spectra. Ensemble regressions, support vector machine regressions, Gaussian kernel regressions, and artificial neural network techniques are trained and tested on cerium-gallium pellet spectra. A thorough hyperparameter optimization experiment is conducted initially to determine the best design features for each model. The optimized models are evaluated for sensitivity and precision using the limit of detection (LoD) and root mean-squared error of prediction (RMSEP) metrics, respectively. Gaussian kernel regression yields the superlative predictive model with an RMSEP of …
Kemar Hats Head Orientation Directivity,
2022
Brigham Young University
Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman
Directivity
No abstract provided.
Enhanced Study Of Complex Systems By Unveiling Hidden Symmetries With Dynamical Visibility,
2022
Eastern Washington University
Enhanced Study Of Complex Systems By Unveiling Hidden Symmetries With Dynamical Visibility, Nhat Vu Minh Nguyen
2022 Symposium
One of the great challenges in complex and chaotic dynamics is to reveal its deterministic structures. These temporal dynamical structures are sometimes a consequence of hidden symmetries. Detecting and understanding them can allow the study of complex systems even without knowing the full underlying mathematical description of the system. Here we introduce a new technique, called Dynamical Visibility, that quantifies temporal correlations of the dynamics based upon some symmetry conditions. This visibility measures the departure of the dynamics from internal symmetries. We apply this technique to well-known chaotic systems, such as the logistic map and the circle map, as well …
What Happens When Transition Metal Trichalcogenides Are Interfaced With Gold?,
2022
University of Nebraska–Lincoln
What Happens When Transition Metal Trichalcogenides Are Interfaced With Gold?, Archit Dhingra, Dmitri E. Nikonov, Alexey Lipatov, Alexander Sinitskii, Peter Dowben
Peter Dowben Publications
Transition metal trichalcogenides (TMTs) are two-dimensional (2D) systems with quasi-one-dimensional (quasi-1D) chains. These 2D materials are less susceptible to undesirable edge defects, which enhances their promise for low-dimensional optical and electronic device applications. However, so far, the performance of 2D devices based on TMTs has been hampered by contact-related issues. Therefore, in this review, a diligent effort has been made to both elucidate and summarize the interfacial interactions between gold and various TMTs, namely, In4Se3, TiS3, ZrS3, HfS3, and HfSe3. X-ray photoemission spectroscopy data, supported by the results …
Development Of A Fluxgate Magnetometer Model,
2022
University of New Hampshire, Durham
Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats
Honors Theses and Capstones
As a part of the UNH SWFO-L1 mission to monitor space weather and the sun’s behavior, the fluxgate magnetometer is an important component to measure external magnetic fields. The basic principle of a fluxgate magnetometer is to detect changes in the ambient magnetic field by inducing a magnetic field in a ferromagnetic material via a drive winding. Each magnetometer is unique due to the ferromagnetic properties of the core material which can be seen in the hysteresis loop which is a relationship between the magnetic field strength (H) and the induced magnetic field (B). Measuring the hysteresis of a fluxgate …
Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications,
2022
West Virginia University
Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam
Graduate Theses, Dissertations, and Problem Reports
Real-time health monitoring of high temperature systems (>500oC) in harsh environments is necessary to prevent catastrophic events caused by structural failures, varying pressure, and chemical reactions. Conventional solid-state temperature sensors such as resistance temperature detectors (RTDs) and thermocouples are restricted by their operating environments, sensor dimensions and often require external power sources for their operation. The current work presents the research and development of RF-based passive wireless sensing technology targeting high temperatures and harsh environmental conditions. Passive wireless devices are generally classified as near-field and far-field devices based on the interrogation distance. Near-field sensors are placed at …
Studying The Conditions For Magnetic Reconnection In Solar Flares With And Without Precursor Flares,
2022
Air Force Institute of Technology
Studying The Conditions For Magnetic Reconnection In Solar Flares With And Without Precursor Flares, Seth H. Garland, Daniel J. Emmons, Robert D. Loper
Faculty Publications
Forecasting of solar flares remains a challenge due to the limited understanding of the triggering mechanisms associated with magnetic reconnection, the primary physical phenomenon connected to these events. Studies have indicated that changes to the photospheric magnetic fields associated with magnetic reconnection – particularly in relation to the field helicity – occur during solar flare events. This study utilized data from the Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) and SpaceWeather HMI Active Region Patches (SHARPs) to analyze full vector-field component data of the photospheric magnetic field during solar flare events within a near decade long HMI dataset. …
A Monolithic 3d Printed Axisymmetric Co-Flow Single And Compound Emulsion Generator,
2022
University of Illinois at Chicago
A Monolithic 3d Printed Axisymmetric Co-Flow Single And Compound Emulsion Generator, Amirreza Ghaznavi, Yang Lin, Mark Douvidzon, Adam Szmelter, Alannah Rodrigues, Malik Blackman, David Eddington, Tal Carmon, Lev Deych, Lan Yang, Jie Xu
Publications and Research
We report a microfluidic droplet generator which can produce single and compound droplets using a 3D axisymmetric co-flow structure. The design considered for the fabrication of the device integrated a user-friendly and cost-effective 3D printing process. To verify the performance of the device, single and compound emulsions of deionized water and mineral oil were generated and their features such as size, generation frequency, and emulsion structures were successfully characterized. In addition, the generation of bio emulsions such as alginate and collagen aqueous droplets in mineral oil was demonstrated in this study. Overall, the monolithic 3D printed axisymmetric droplet generator could …
Lower Temperature Annealing Of Vapor Diffused Nb3Sn For Accelerator Cavities,
2022
Old Dominion University
Lower Temperature Annealing Of Vapor Diffused Nb3Sn For Accelerator Cavities, Jayendrika K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, S. Biedron (Ed.), E. Simakov (Ed.), S. Milton (Ed.), P.M. Anisimov (Ed.), V.R.W. Schaa (Ed.)
Physics Faculty Publications
Nb3Sn is a next-generation superconducting material for the accelerator cavities with higher critical temperature and superheating field, both twice compared to Nb. It promises superior performance and higher operating temperature than Nb, resulting in significant cost reduction. So far, the Sn vapor diffusion method is the most preferred and successful technique to coat niobium cavities with Nb3Sn. Although several post-coating techniques (chemical, electrochemical, mechanical) have been explored to improve the surface quality of the coated surface, an effective process has yet to be found. Since there are only a few studies on the post-coating heat treatment …
Field Shielding Of NBT𝖨n Based Multilayer Structure For Accelerating Cavities,
2022
Old Dominion University
Field Shielding Of NBT𝖨n Based Multilayer Structure For Accelerating Cavities, Iresha Harshani Senevirathne, Jean R. Delayen, Alex Gurevich, D. R. Beverstock, A.-M. Valente-Feliciano
Physics Faculty Publications
Over the past few decades, bulk niobium (Nb) has been the material of choice for superconducting radio frequency (SRF) cavities used in particle accelerators to achieve higher accelerating gradients and lower RF losses. Multi-layer (SIS) structures consisting of alternating thin layers of superconductor(S) and insulator(I) deposited on a bulk Nb have been proposed to enhance the peak surface magnetic field and sustain a higher accelerating gradient. In this study, multilayers based NbTiN and AlN deposited on bulk Nb are used to test the proposed enhancement using the DC magnetic Hall probe technique. The technique detects a penetrating magnetic field through …
Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators,
2022
Old Dominion University
Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich
Physics Faculty Publications
We investigated the nonlinear Meissner effect (NLME) in Nb3Sn thin-film coplanar resonators by measuring the resonance frequency as a function of a parallel magnetic field at different temperatures. We used low rf power probing in films thinner than the London penetration depth λ(B) to significantly increase the field onset of vortex penetration and measure the NLME under equilibrium conditions. Contrary to the conventional quadratic increase of λ(B) with B expected in s-wave superconductors, we observed a nearly linear increase of the penetration depth with B. We concluded that this behavior of λ(B) is due to weak linked grain …
Cebaf Injector Model For KL Beam Conditions,
2022
Old Dominion University
Cebaf Injector Model For KL Beam Conditions, Sunil Pokharel, Geoffrey A. Krafft, A. S. Hofler, R. Kazimi, M. Bruker, J. Grames, S. Zhang, Frank Zimmerman (Ed.), Hitoshi Tanaka (Ed.), Porntip Sudmuang (Ed.), Prapawan Sunwong (Ed.), Thakonwat Chanwattana (Ed.), Christine Petit-Jean-Genaz (Ed.), Volker R.W. Schaa (Ed.)
Physics Faculty Publications
The Jefferson Lab KL experiment will run at the Continuous Electron Beam Accelerator Facility with a much lower bunch repetition rate (7.80 or 15.59 MHz) than nominally used (249.5 or 499 MHz). While the proposed average current of 2.5 - 5.0 µA is relatively low compared to the maximum CEBAF current of approximately 180 µA, the corresponding bunch charge is atypically high for CEBAF injector operation. In this work, we investigated the evolution and transmission of low-rep-rate, high-bunch-charge (0.32 to 0.64 pC) beams through the CEBAF injector. Using the commercial software General Particle Tracer, we have simulated and analyzed the …
Evaluation Of Single-Cell Cavities Made Of Forged Ingot Niobium At Jefferson Lab,
2022
Old Dominion University
Evaluation Of Single-Cell Cavities Made Of Forged Ingot Niobium At Jefferson Lab, P. Dhakal, Bashu D. Khanal, Gianluigi Ciovati, G. R. Myneni
Physics Faculty Publications
Currently, fine grain niobium (Nb) (grain size ∼ 50 µm) and large grain Nb (grain size of a few cm) are being used for the fabrication of superconducting radio frequency (SRF) cavities. Medium grain forged ingot with grain size of a few hundred µm may be beneficial for cost-effectiveness as well as providing better performance for future SRF-based accelerators. Forged ingot Nb with medium grain size is a novel production method to obtain Nb discs used for the fabrication of superconducting radio frequency cavities. We have fabricated two 1.5 GHz single cell cavities made from forged Nb ingot with a …
197 Mhz Waveguide Loaded Crabbing Cavity Design For The Electron-Ion Collider,
2022
Old Dominion University
197 Mhz Waveguide Loaded Crabbing Cavity Design For The Electron-Ion Collider, Subashini De Silva, Jean Delayen, J. Guo, R. A. Rimmer, Z. Li, B. P. Xiao, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.)
Physics Faculty Publications
The Electron-Ion Collider will require crabbing systems at both hadron and electron storage rings in order to reach the desired luminosity goal. The 197 MHz crab cavity system is one of the critical rf systems of the collider. The crab cavity, based on the rf-dipole design, explores the option of waveguide load damping to suppress the higher order modes and meet the tight impedance specifications. The cavity is designed with compact dog-bone waveguides with transitions to rectangular wave-guides and waveguide loads. This paper presents the compact 197 MHz crab cavity design with waveguide damping and other ancillaries.
Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors,
2022
Old Dominion University
Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, I.H. Senevianthe, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano, Kenji Saito (Ed.), Ting Xu (Ed.), Yana Lesage (Ed.), Volker R.W. Schaa (Ed.)
Physics Faculty Publications
The SIS structure which consists of alternative thin layers of superconductors and insulators on a bulk niobium has been proposed to shield niobium cavity surface from high magnetic field and hence increase the accelerating gradient. The study of the behavior of multilayer superconductors in an external magnetic field is essential to optimize their SRF performance. In this work we report the development of a simple and efficient technique to measure penetration of magnetic field into bulk, thin film and multilayer superconductors. Experimental setup contains a small superconducting solenoid which can produce a parallel surface magnetic field up to 0.5 T …
Cooling Performance In A Dual Energy Storage Ring Cooler,
2022
Old Dominion University
Cooling Performance In A Dual Energy Storage Ring Cooler, B. Dhital, Y. S. Derbenev, D. Douglas, G. A. Krafft, H. Zhang, F. Lin, V. S. Morozov, Y. Zhang, Frank Zimmerman (Ed.), Porntip Sudmuang (Ed.), Prapong Klysubun (Ed.), Prapaiwan Sunwong (Ed.), Thakonwat Chanwattana (Ed.), Christine Petit-Jean-Genaz (Ed.), Volker R.W. Schaa (Ed.)
Physics Faculty Publications
The longitudinal and transverse emittance growth in hadron beams due to intra-beam scattering (IBS) and other heating sources deteriorate the luminosity in a collider. Hence, a strong hadron beam cooling is required to reduce and preserve the emittance. The cooling of high energy hadron beam is challenging. We propose a dual energy storage ring-based electron cooler that uses an electron beam to extract heat away from hadron beam in the cooler ring while the electron beam is cooled by synchrotron radiation damping in the high energy damping ring. In this paper, we present a design of a dual energy storage …
Modeling A Nb3Sn Cryounit In Gpt In Uitf,
2022
Old Dominion University
Modeling A Nb3Sn Cryounit In Gpt In Uitf, Sunil Pokharel, Geoffey A. Krafft, A. S. Hofler, Frank Zimmerman (Ed.), Hitoshi Tanaka (Ed.), Porntip Sudmuang (Ed.), Prapong Klysubun (Ed.), Prapaiwan Sunwong (Ed.), Thakonwat Chanwattana (Ed.), Christine Petit-Jean-Genaz (Ed.)
Physics Faculty Publications
Nb₃Sn is a prospective material for future superconducting RF (SRF) accelerator cavities. The material can achieve higher quality factors, higher temperature operation and potentially higher accelerating gradients (E_{acc} 96 MV/m) compared to conventional niobium. In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb₃Sn cavities. We studied the effects of the buncher cavity and varied the gun voltages from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb₃Sn five-cell cavities energy gains with the framework of General Particle Tracer (GPT). Our calculations show …
Magnetic Field Mapping Of 1.3 Ghz Superconducting Radio Frequency Niobium Cavities,
2022
Old Dominion University
Magnetic Field Mapping Of 1.3 Ghz Superconducting Radio Frequency Niobium Cavities, Ishwari P. Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich, Frank Zimmermann (Ed.), Hitoshi Tanaka (Ed.), Porntip Sudmuang (Ed.), Prapong Klysubun (Ed.), Prapaiwan Sunwong (Ed.), Thakonwat Chanwattana (Ed.), Christine Petit-Jean-Genaz (Ed.), Volker R.W. Schaa (Ed.)
Physics Faculty Publications
Niobium is the material of choice to build superconducting radio frequency (SRF) cavities, which are fundamental building blocks of modern particle accelerators. These cavities require a cryogenic cool-down to ~2 - 4 K for optimum performance minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the significant contributor to residual losses is trapped magnetic flux. The flux trapping mechanism depends on different factors, such as surface preparations and cool-down conditions. We have developed a diagnostic magnetic field scanning system (MFSS) using Hall probes and anisotropic magneto-resistance sensors to …
Preliminary Results Of Magnetic And Temperature Map System For 3 Ghz Superconducting Radio Frequency Cavities,
2022
Old Dominion University
Preliminary Results Of Magnetic And Temperature Map System For 3 Ghz Superconducting Radio Frequency Cavities, Ishwari Parajuli, Bashu Khanal, Gianluigi Ciovati, Jean Delayen, Alex Gurevich, Frank Zimmerman (Ed.), Hitoshi Tanaka (Ed.), Porntip Sudmuang (Ed.), Prapaiwan Sunwong (Ed.), Thakonwat Chanwattana (Ed.), Christine Petit-Jean-Genaz (Ed.), Volker R.W. Schaa (Ed.)
Physics Faculty Publications
Superconducting radio frequency (SRF) cavities are fundamental building blocks of modern particle accelerators. When we cool these cavities at cryogenic temperature ~2 – 4 K, we can get optimum performance by minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the leading sources of residual losses in SRF cavities is trapped magnetic flux. The flux trapping mechanism depends on different surface preparations and cool-down conditions. We have designed, developed, and commissioned a combined magnetic (B) and temperature (T) mapping system using anisotropic magneto-resistance (AMR) sensors and carbon resistors …