Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,383 Full-Text Articles 3,287 Authors 272,107 Downloads 94 Institutions

All Articles in Engineering Physics

Faceted Search

1,383 full-text articles. Page 1 of 54.

Substitutional And Interstitial Doping In Laco5 System For The Development Of Hard Magnetic Properties: A First Principles Study, Huseyin Ucar, Renu Choudhary, Durga Paudyal 2020 California State Polytechnic University - Pomona

Substitutional And Interstitial Doping In Laco5 System For The Development Of Hard Magnetic Properties: A First Principles Study, Huseyin Ucar, Renu Choudhary, Durga Paudyal

Ames Laboratory Accepted Manuscripts

We investigate here the changes in the electronic structure at the transition metal sites of the RE-TM5 structure (RE = Rare Earth, TM = Transition Metal) while doping the interstitial sites with nitrogen. LaCo5 compound is taken as the baseline compound owing to its critically needed intrinsic magnetic properties such as magneto-crystalline anisotropy energy (MAE) of ≈5 meV/fu [1] due to the contributions from the cobalt network. In addition, because of the lack of 4f electrons in lanthanum, complications originating from the treatment of the 4f localized electrons are absent in this compound; making it an ideal reference material to all ...


Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati 2020 University of New Mexico

Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Mathematics and Statistics Faculty and Staff Publications

No abstract provided.


Mechani-Kits Senior Design Project, Jake Utley, Sophie Carson, Vincent Seguin 2020 California Polytechnic State University, San Luis Obispo

Mechani-Kits Senior Design Project, Jake Utley, Sophie Carson, Vincent Seguin

Mechanical Engineering

Studies suggest that when designed and executed well, hands-on activities can enhance student understanding of key mechanics concepts. Current products are expensive and typically not designed to meet a variety of learning objectives. Through the Mechanics of Inclusion and Inclusivity in Mechanics grant, the Cal Poly Physics and Engineering Departments are seeking to incorporate new hands-on activities into their courses. Our team has designed three inexpensive ”MechaniKits” to be used in physics, statics and dynamics courses [1]. This Final Design Review outlines our findings, objectives, and final designs for this project. It also explains our manufacturing and design verification plans ...


Non-Equilibrium Growth Of Metal Clusters On A Layered Material: Cu On Mos2, Dapeng Jing, Ann Lii-Rosales, King C. Lai, Qiang Li, Jaeyoun Kim, Michael C. Tringides, James W. Evans, Patricia A. Thiel 2020 Iowa State University and Ames Laboratory

Non-Equilibrium Growth Of Metal Clusters On A Layered Material: Cu On Mos2, Dapeng Jing, Ann Lii-Rosales, King C. Lai, Qiang Li, Jaeyoun Kim, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

We use a variety of experimental techniques to characterize Cu clusters on bulk MoS2 formed via physical vapor deposition of Cu in ultrahigh vacuum, at temperatures ranging from 300 K to 900 K. We find that large facetted clusters grow at elevated temperatures, using high Cu exposures. The cluster size distribution is bimodal, and under some conditions, large clusters are surrounded by a denuded zone. We propose that defect-mediated nucleation, and coarsening during deposition, are both operative in this system. At 780 K, a surprising type of facetted cluster emerges, and at 900 K this type predominates: pyramidal clusters with ...


An Investigation Of Diode Failure, Nicholas James Adams 2020 California Polytechnic State University, San Luis Obispo

An Investigation Of Diode Failure, Nicholas James Adams

Physics

Solar electricity can be used to cheaply cook food and charge electronic devices. We investigate the viability of using diodes as heating elements for insulated solar electric cooking (ISEC). In addition, information on designing and constructing ISEC compatible phone chargers and rechargeable LED lighting systems is included.


Gait Characterization Using Computer Vision Video Analysis, Martha T. Gizaw 2020 College of William and Mary

Gait Characterization Using Computer Vision Video Analysis, Martha T. Gizaw

Undergraduate Honors Theses

The World Health Organization reports that falls are the second-leading cause of accidental death among senior adults around the world. Currently, a research team at William & Mary’s Department of Kinesiology & Health Sciences attempts to recognize and correct aging-related factors that can result in falling. To meet this goal, the members of that team videotape walking tests to examine individual gait parameters of older subjects. However, they undergo a slow, laborious process of analyzing video frame by video frame to obtain such parameters. This project uses computer vision software to reconstruct walking models from residents of an independent living retirement ...


Development Of Wearable Sensors For Gait Analysis, Jorden Smyth 2020 William & Mary

Development Of Wearable Sensors For Gait Analysis, Jorden Smyth

Undergraduate Honors Theses

In an ongoing experiment being conducted at The Williamsburg Landing by The Center for Balance and Aging Studies (CBAS), gait analysis is being performed on senior citizens in order to identify gait characteristics that are predictive of an increased likelihood to fall. This thesis describes the design and analysis of wearable sensors meant to assist the Williamsburg Landing study by increasing the efficiency and breadth of data collection. These sensors collect distance data from the foot to the ground over the course of multiple steps and return an approximation of the average step cycle for the subject. From my analysis ...


Design And Construction Of A Computer Controlled Astronomical Spectropolarimeter, Jacob Marchio 2020 University of Maine

Design And Construction Of A Computer Controlled Astronomical Spectropolarimeter, Jacob Marchio

Honors College

A theoretical description of a simple optical train, modulated signal based spectropolarimeter is discussed. The design includes, after the telescope optical tube (in this case, a 9.25” Schmidt Cassegrain), a rotating quarter waveplate (compensator), a fixed linear polarizer (analyzer), and transmission grating of 100l/mm, with a ZWO ASI290mm astronomical camera. The practical constraints on implementing such an instrument are discussed, and the construction of the spectropolarimeter is detailed, including the necessary optics, optomechanics, and electromechanics. The rotation and recording of the rotating compensator is facilitated by a motorized connection with proportional feedback control, and the uncertainty in measuring ...


Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet 2020 Univeristy of Maine

Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet

Electronic Theses and Dissertations

Unmanned Aerial Vehicles (UAVs) expand the available mission-space for a wide range of budgets. Using MATLAB, this project has developed a six degree of freedom (6DOF) simulation of UAV flight, an Extended Kalman Filter (EKF), and an algorithm for localizing radioactive sources using low-cost hardware. The EKF uses simulated low-cost instruments in an effort to estimate the UAV state throughout simulated flight.

The 6DOF simulates aerodynamics, physics, and controls throughout the flight and provides outputs for each time step. Additionally, the 6DOF simulation offers the ability to control UAV flight via preset waypoints or in realtime via keyboard input.

Using ...


285— Modifications Of Cosmic Watch Muon Detectors For Deployment At Letchworth State Park, Kevin Seitz 2020 SUNY Geneseo

285— Modifications Of Cosmic Watch Muon Detectors For Deployment At Letchworth State Park, Kevin Seitz

GREAT Day

For an American Physical Society funded physics outreach project, fifteen Cosmic Watch cosmic ray muon detectors, designed at MIT, are being assembled by students at Geneseo. Over the summer of 2020, ten detectors will be deployed around Letchworth State Park to educate park visitors about cosmic rays. The muon detection rate and cumulative count are displayed on a small OLED screen, with an LED flashing every time a muon passes through the detector’s scintillator. Each incidence is also logged to a micro SD card. Customized open-source software was used to allow the OLED and SD card to work simultaneously ...


Single-Atom-Layer Traps In A Solid Electrolyte For Lithium Batteries, Feng Zhu, Md Shafiqul Islam, Lin Zhou, Zhenqi Gu, Ting Liu, Xinchao Wang, Jun Luo, Ce-Wen Nan, Yifei Mo, Cheng Ma 2020 University of Science and Technology of China

Single-Atom-Layer Traps In A Solid Electrolyte For Lithium Batteries, Feng Zhu, Md Shafiqul Islam, Lin Zhou, Zhenqi Gu, Ting Liu, Xinchao Wang, Jun Luo, Ce-Wen Nan, Yifei Mo, Cheng Ma

Ames Laboratory Accepted Manuscripts

In order to fully understand the lithium-ion transport mechanism in solid electrolytes for batteries, not only the periodic lattice but also the non-periodic features that disrupt the ideal periodicity must be comprehensively studied. At present only a limited number of non-periodic features such as point defects and grain boundaries are considered in mechanistic studies. Here, we discover an additional type of non-periodic feature that significantly influences ionic transport; this feature is termed a “single-atom-layer trap” (SALT). In a prototype solid electrolyte Li0.33La0.56TiO3, the single-atom-layer defects that form closed loops, i.e., SALTs, are found ubiquitous by atomic-resolution electron ...


Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos 2020 CUNY City College

Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos

Open Educational Resources

Concepts covered in the undergraduate electrical engineering class of electromagnetics


Pair-A-Dice Lost: Experiments In Dice Control, Robert H. Scott III, Donald R. Smith 2020 Monmouth University

Pair-A-Dice Lost: Experiments In Dice Control, Robert H. Scott Iii, Donald R. Smith

UNLV Gaming Research & Review Journal

This paper presents our findings from experiments designed to test whether we could use a custom-made dice throwing machine applying common dice control methods to produce dice rolls that differ from random. In earlier research we calculated the percentages of control a craps player needs to break even or beat the house (Smith and Scott, 2018). Using the most common practices of dice control in craps, we established how dice should be configured (i.e., set) and thrown to achieve certain outcomes such as not rolling a seven in the point cycle. We decided to run experiments to see if ...


Agenda, Revised, Shubha Tewari 2020 University of Massachusetts Amherst

Agenda, Revised, Shubha Tewari

Science and Engineering Saturday Seminars

Materials from the seminars. The agenda was revised to include online sessions due to the Covid-19 pandemic.


Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben 2020 University of Nebraska-Lincoln

Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben

Peter Dowben Publications

We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001) having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from ...


Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, JoEllyn McMillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman 2020 University of Nebraska Medical Center

Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman

Faculty Publications from Nebraska Center for Materials and Nanoscience

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention.

Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single photon emission ...


Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer 2020 University of Nebraska - Lincoln

Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer

Faculty Publications from Nebraska Center for Materials and Nanoscience

Magnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order. Here, we use nonequilibrium processing to produce B20-ordered Co1+xSi1−x with a maximum Co solubility of x = 0.043. Above ...


Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li 2020 University of Nebraska - Lincoln

Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li

Faculty Publications from Nebraska Center for Materials and Nanoscience

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software ...


Quasiperiodic Ordering In Thick Sn Layer On I-Al-Pd-Mn: A Possible Quasicrystalline Clathrate, Vipin Kumar Singh, Marek Mihalkovic, Marian Krajci, Shuvam Sarkar, Pampa Sadhukhan, M. Maniraj, Abhishek Rai, Katariina Pussi, Deborah L. Schlagel, Thomas A. Lograsso, Ajay Kumar Shukla, Sudipta Roy Barman 2020 UGC-DAE Consortium for Scientific Research

Quasiperiodic Ordering In Thick Sn Layer On I-Al-Pd-Mn: A Possible Quasicrystalline Clathrate, Vipin Kumar Singh, Marek Mihalkovic, Marian Krajci, Shuvam Sarkar, Pampa Sadhukhan, M. Maniraj, Abhishek Rai, Katariina Pussi, Deborah L. Schlagel, Thomas A. Lograsso, Ajay Kumar Shukla, Sudipta Roy Barman

Ames Laboratory Accepted Manuscripts

Realization of an elemental solid-state quasicrystal has remained a distant dream so far in spite of extensive work in this direction for almost two decades. In the present work, we report the discovery of quasiperiodic ordering in a thick layer of elemental Sn grown on icosahedral (i)-Al-Pd-Mn. The scanning tunneling microscopy (STM) images and the low-energy electron diffraction patterns of the Sn layer show specific structural signatures that portray quasiperiodicity but are distinct from the substrate. Photoemission spectroscopy reveals the existence of the pseudogap around the Fermi energy up to the maximal Sn thickness. The structure of the Sn ...


Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar 2020 Missouri State University

Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar

MSU Graduate Theses

The exchange bias (EB) effect, especially in nanomaterials, is highly promising for use in antiferromagnet-based spintronics applications. NiO is a well known antiferromagnetic material with a high Néel temperature (525K) and can exhibit ferromagnetism/ ferrimagnetism by adding other magnetic transition elements. Our previous work has shown that the antiferromagnetic characteristics of conventional NiO insulating nanostructured material can be altered to have substantial ferrimagnetic characteristics by doping NiO with Mn or Co. Pulsed laser deposition (PLD) was used to grow heterostructures comprised of a nanostructured thin NiO film deposited on the surface of a MgO (100) and Al2O3 ...


Digital Commons powered by bepress