Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,051 Full-Text Articles 2,808 Authors 951,997 Downloads 97 Institutions

All Articles in Electromagnetics and Photonics

Faceted Search

2,051 full-text articles. Page 1 of 85.

Design Of High Efficiency Doherty Power Amplifier, Kobi G. Kelly, Severin Pindell 2024 California Polytechnic State University, San Luis Obispo

Design Of High Efficiency Doherty Power Amplifier, Kobi G. Kelly, Severin Pindell

Electrical Engineering

The project includes design and fabrication of a high efficiency power amplifier for a student design competition held at International Microwave Symposium (IMS) 2023. Efficient power amplifiers are critical for base station communication requiring efficient use of available power. The final design optimizes power added efficiency (PAE) and linearity. The amplifier will operate at 2.45 GHz. Competitive PAE above 50%, and C/I above 30 dB is achieved by leveraging a Doherty class amplifier using accurate discrete CGH4006P transistor models to simulate an efficient and linear design. Unique design features include optimal transistor bias point selection and power split ratios between …


Single-Polarization And Single-Mode Hybrid Hollow-Core Anti-Resonant Fiber Design At 2 Μm, Herschel Herring, Mohammad Al Mahfuz, Md Selim Habib 2024 Florida Polytechnic University

Single-Polarization And Single-Mode Hybrid Hollow-Core Anti-Resonant Fiber Design At 2 Μm, Herschel Herring, Mohammad Al Mahfuz, Md Selim Habib

Electrical Engineering and Computer Science Faculty Publications

In this paper, to the best of our knowledge, a new
type of hollow-core anti-resonant fiber (HC-ARF) design using
hybrid silica/high-index material (HIM) cladding is presented
for single-polarization, high-birefringence, and endlessly single-
mode operation at 2 μm wavelength. We show that the inclusion
of a HIM layer in the cladding allows strong suppression of
𝑥−polarization, while maintaining low propagation loss and
single-mode propagation for 𝑦−polarization. The optimized HC-
ARF design includes a combination of low propagation loss,
high-birefringence, and polarization-extinction ratio (PER) or
loss ratio of 0.02 dB/m, 1.2×10−4, and >550 respectively, while the
loss of the 𝑥−polarization is >20 …


Low Noise Amplifier For 5ghz Wi-Fi Applications On 22nm, Harshdeep Singh 2024 University of Arkansas, Fayetteville

Low Noise Amplifier For 5ghz Wi-Fi Applications On 22nm, Harshdeep Singh

Electrical Engineering Undergraduate Honors Theses

More devices than ever are being used to connect to the internet via Wi-Fi than ever before. This creates the demand for improving Wi-Fi standards and wireless transceivers. On of the most important stages of a Wi-Fi receiver is the low noise amplifier (LNA), this is because it is the very first stage after the antenna receives the signal. The LNA is responsible for boasting the incoming signal while adding a low amount of noise to boast the signal enough to make it receptible to the rest of the receiver system. This study sought to design an inductively degenerated common …


6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew 2024 Washington University in St. Louis

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We develop six-dimensional single-molecule orientation-localization microscopy (SMOLM) to measure the 3D positions and 3D orientations simultaneously of single fluorophores. We show how careful optimization of phase and polarization modulation components can encode phase, polarization, and angular spectrum information from each fluorescence photon into a microscope’s dipole-spread function. We used the transient binding and blinking of Nile red (NR) to characterize the helical structure of fibrils formed by designed amphipathic peptides, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. We also deployed merocyanine 540 to uncover the interfacial architectures of biomolecular condensates.


Development Of An Electromagnetic System For Wireless Magnetic Manipulation Of Soft Capsule Endoscope For Drug Delivery Applications, Nada Ashraf Hussein Mahmoud 2024 American University in Cairo

Development Of An Electromagnetic System For Wireless Magnetic Manipulation Of Soft Capsule Endoscope For Drug Delivery Applications, Nada Ashraf Hussein Mahmoud

Theses and Dissertations

Wireless capsule endoscopy (WCE) is a remarkable diagnostic device that examines the gastrointestinal (GI) tract. The WCE is a small capsule integrated with a camera that is used to visualize the inner mucosa of the GI tract. WCE has been proven to be the most effective method to diagnose GI diseases and GI cancers. The procedure reduces the discomfort and risk compared to conventional endoscopy methods. However, current WCEs lack the ability to take a biopsy or deliver a drug to a specific location. Those therapeutic functions can be introduced by wirelessly controlled WCEs. This thesis introduces an electromagnetic system …


Side Lobe Level Reduction And Array Thinning Of Concentric Circular Antenna Arrays, Alzahraa H. Nosier, Ahmed M. Elkhawaga, Mohamed E. Nasr, Nessim M. Mahmoud, Amr H. Hussein 2024 Electronics and Electrical Communications Engineering Dept., Faculty of Engineering, Tanta University, Tanta, Egypt.

Side Lobe Level Reduction And Array Thinning Of Concentric Circular Antenna Arrays, Alzahraa H. Nosier, Ahmed M. Elkhawaga, Mohamed E. Nasr, Nessim M. Mahmoud, Amr H. Hussein

Mansoura Engineering Journal

This paper presents a new beamforming technique based on the hybrid combination of the convolution algorithm (CA) and the genetic algorithm (GA) for reducing side lobe level (SLL) and array thinning of concentric circular antenna arrays (CCAA), which is denoted as C/GA technique. The CA determines the excitations of the elements, while the GA optimizes the radii of the circular arrays to adjust the half-power beamwidth (HPBW). For CCAA consisting of uniform feeding circular arrays, we assume that there are excitation coefficients that are distributed symmetrically around the array center and arranged in a vector. The excitation vector is convolved …


Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu 2024 University of Dayton

Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Telemedicine has the potential to improve access and delivery of healthcare to diverse and aging populations. Recent advances in technology allow for remote monitoring of physiological measures such as heart rate, oxygen saturation, blood glucose, and blood pressure. However, the ability to accurately detect falls and monitor physical activity remotely without invading privacy or remembering to wear a costly device remains an ongoing concern. Our proposed system utilizes a millimeter-wave (mmwave) radar sensor (IWR6843ISK-ODS) connected to an NVIDIA Jetson Nano board for continuous monitoring of human activity. We developed a PointNet neural network for real-time human activity monitoring that can …


Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, CheolGi Kim 2024 DGIST

Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, Cheolgi Kim

Bioelectronics Publications

Conventional magnetophoresis techniques for manipulating biocarriers and cells predominantly rely on large-scale electromagnetic systems, which is a major obstacle to the development of portable and miniaturized cell-on-chip platforms. Herein, a novel magnetic engineering approach by tailoring a nanoscale notch on a disk micromagnet using two-step optical and thermal lithography is developed. Versatile manipulations are demonstrated, such as separation and trapping, of carriers and cells by mediating changes in the magnetic domain structure and discontinuous movement of magnetic energy wells around the circumferential edge of the micromagnet caused by a locally fabricated nano-notch in a low magnetic field system. The motion …


Exponential Fusion Of Interpolated Frames Network (Efif-Net): Advancing Multi-Frame Image Super-Resolution With Convolutional Neural Networks, Hamed Elwarfalli, Dylan Flaute, Russell C. Hardie 2024 University of Dayton

Exponential Fusion Of Interpolated Frames Network (Efif-Net): Advancing Multi-Frame Image Super-Resolution With Convolutional Neural Networks, Hamed Elwarfalli, Dylan Flaute, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Convolutional neural networks (CNNs) have become instrumental in advancing multi-frame image super-resolution (SR), a technique that merges multiple low-resolution images of the same scene into a high-resolution image. In this paper, a novel deep learning multi-frame SR algorithm is introduced. The proposed CNN model, named Exponential Fusion of Interpolated Frames Network (EFIF-Net), seamlessly integrates fusion and restoration within an end-to-end network. Key features of the new EFIF-Net include a custom exponentially weighted fusion (EWF) layer for image fusion and a modification of the Residual Channel Attention Network for restoration to deblur the fused image. Input frames are registered with subpixel …


Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi 2024 University of Virginia

Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi

Chemistry & Biochemistry Faculty Publications

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier …


Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi 2024 University of Kentucky

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi

Theses and Dissertations--Electrical and Computer Engineering

The long-standing technological pillars for computing systems evolution, namely Moore's law and Von Neumann architecture, are breaking down under the pressure of meeting the capacity and energy efficiency demands of computing and communication architectures that are designed to process modern data-centric applications related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In response, both industry and academia have turned to 'more-than-Moore' technologies for realizing hardware architectures for communication and computing. Fortunately, Silicon Photonics (SiPh) has emerged as one highly promising ‘more-than-Moore’ technology. Recent progress has enabled SiPh-based interconnects to outperform traditional electrical interconnects, offering advantages like high bandwidth density, …


A Comprehensive Exploration Of Fundamental And Experimental Characteristics Of Nanophotonic Metasurfaces, Nasrin Razmjooei 2024 University of Texas at Arlington

A Comprehensive Exploration Of Fundamental And Experimental Characteristics Of Nanophotonic Metasurfaces, Nasrin Razmjooei

Electrical Engineering Dissertations

The advent of diffraction gratings with periodic unit cells has led to numerous advancements in theoretical studies and practical applications. Recently, these structures have been recognized as subsets of “meta-surfaces” or “meta-materials”, employing periodically aligned features at the wavelength scale to manipulate electromagnetic wave properties for diverse applications. This manipulation extends to controlling amplitude, phase, spectral distribution, polarization state, and the local mode structure of light across various spectral expressions. A significant characteristic of these metasurfaces is their ability to couple incident light to laterally propagating leaky Bloch modes in the subwavelength regime, resulting in resonance at specific wavelengths known …


Series Aperture Coupled Fed Phased Array Antenna, Guang Yang 2023 Southern Methodist University

Series Aperture Coupled Fed Phased Array Antenna, Guang Yang

Electrical Engineering Theses and Dissertations

Phased arrays are employed in a wide range of civil and Military contexts, including RADAR, cellular communications, and satellite communications. However, modern phased-array antennas require complex design and bulky structure at high costs, hindering their implementation in many applications. The critical aspect of a phased array design lies in power splitting with a proper phase to each radiating element. Conventional power splitters such as quarter-wavelength or Wilkinson power splitters suffer problems associated with complex array network and high power dissipation. Furthermore, popular phase shifters such as MEMS switch, ferrite-based or PIN diode have drawbacks of low power-handling capability, expensive packaging, …


Compact Vhf And Uhf Antennas For Integration With Saw Devices In Harsh Environment, Sri Lekha Srimat Kilambi 2023 University of Maine

Compact Vhf And Uhf Antennas For Integration With Saw Devices In Harsh Environment, Sri Lekha Srimat Kilambi

Electronic Theses and Dissertations

With increasing demand for harsh environment (HE) wireless sensor applications, the need for antennas capable of operating under temperatures up to 1000° C and under corrosive and erosive environments also increases. These environments place severe survivability, stability, and performance demands on antennas designed and fabricated to operate in such conditions.

This work focuses on the design, fabrication, simulation and performance investigation of a compact (~1/25th to 1/10th of a wavelength) combined helical and microstrip antenna design operating as a normal mode helical antenna structure (NMHAS) around 300MHz. The ground plane of the microstrip line also serves as a ground plane …


Fourier Analysis And Optimization Of Inductive Wireless Power Transfer For Electric Vehicle Charging, Andrew P. Foote 2023 University of Tennessee, Knoxville

Fourier Analysis And Optimization Of Inductive Wireless Power Transfer For Electric Vehicle Charging, Andrew P. Foote

Doctoral Dissertations

With the growth of electric vehicle (EV) popularity, different charging options to increase user convenience and reduce charging time such as high power wireless charging are increasingly being developed and researched. Inductive wireless power transfer (WPT) systems for EVs must meet specifications such as stray field, battery power and voltage operating range, efficiency, and ground clearance. The coil geometry and design have a large impact in meeting these constraints. Typical design approaches include iterative analysis of predetermined coil geometries to identify candidates that meet these constraints.

This work instead directly generates WPT coil shapes and magnetic fields to meet specifications …


Additive Manufacturing Of Magnetic Materials For Electric Motor And Generator Applications, Haobo Wang 2023 University of Tennessee, Knoxville

Additive Manufacturing Of Magnetic Materials For Electric Motor And Generator Applications, Haobo Wang

Doctoral Dissertations

This work details the research into the 3D Printing, also known as Additive Manufacturing (AM), of both impermanent and permanent magnets. This work also details the research in enabling such AM magnets in electrical machine applications, primarily motors and generators. The AM processes of many types of magnets are described in detail. The material properties of such AM magnets are also described. The two main types of AM magnets that are discussed in detail are AM NdFeB, and AM Silicon Steel. The implementation of AM NdFeB as rotor magnets, and the implementation of AM Silicon Steel as rotor and stator …


Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran 2023 Florida Institute of Technology

Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran

Theses and Dissertations

A novel parallelizable probabilistic approach to model eddy currents in AC electromagnets is presented in this research. Consequently, power loss associated with the formation of these eddy currents is estimated and validated using experimental data. Furthermore, predicting the effect of ferromagnetic alternating field enhancement on power loss in the source excitation winding has been an active area of research. Unlike a stationary field, an alternating sinusoidal field diffuses partially into the ferromagnetic material leading to a predictably sub-optimal field enhancement. To model these physics, finite element techniques employ nonlinear iterative solvers which are time consuming. A novel method is developed …


Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak 2023 Air Force Research Laboratory

Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak

Faculty Publications

We examine the electromagnetic emission from two photo-illuminated linear arrays composed of inductively charged superconducting ring elements. The arrays are illuminated by an ultrafast infrared laser that triggers microwave broadband emission detected in the 1–26 GHz range. Based on constructive interference from the arrays a narrowing of the forward radiation lobe is observed with increasing element count and frequency demonstrating directed GHz emission. Results suggest that higher frequencies and a larger number of elements are achievable leading to a unique pulsed array emitter concept that can span frequencies from the microwave to the terahertz (THz) regime.


Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani 2023 Kennesaw State University

Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani

Symposium of Student Scholars

This research aims to transform cancer treatment through the optimization of brachytherapy, with a focus on reducing treatment duration, setup complexities, and financial burdens, all while emphasizing patient safety. Patients living at a distance from radiation clinics, particularly those undergoing extended Low Dose Radiation brachytherapy, often struggle with the formidable financial challenges associated with securing nearby accommodations. In response to these issues, the research introduces a radiation capsule designed to condense the conventional six-month treatment period to approximately just one week, thereby significantly reducing the duration of required accommodations. This capsule is especially relevant considering the construction cost of $40 …


Uncertainties In Retrieval Of Remote Sensing Reflectance From Ocean Color Satellite Observations, Eder I. Herrera Estrella 2023 The Graduate Center, City University of New York

Uncertainties In Retrieval Of Remote Sensing Reflectance From Ocean Color Satellite Observations, Eder I. Herrera Estrella

Dissertations, Theses, and Capstone Projects

Ocean Color radiometry uses remote sensing to interpret ocean dynamics by retrieving remote sensing reflectance (𝑅𝑟𝑠) from satellite imagery at different scales and over different time periods. 𝑅𝑟𝑠 spectrum characterizes the ocean color that we observe, and from which we can discern concentrations of chlorophyll, organic and inorganic particles, and carbon fluxes in the ocean and atmosphere. 𝑅𝑟𝑠 is derived from the total radiance at the top of the atmosphere (TOA). However, it only represents up to ten percent of the total signal. Hence, the retrieval of 𝑅𝑟𝑠 from the total radiance at TOA involves the application of atmospheric correction …


Digital Commons powered by bepress