Open Access. Powered by Scholars. Published by Universities.®

VLSI and Circuits, Embedded and Hardware Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

460 Full-Text Articles 607 Authors 219135 Downloads 38 Institutions

All Articles in VLSI and Circuits, Embedded and Hardware Systems

Faceted Search

460 full-text articles. Page 1 of 19.

Autonomous Speed Control For Kia Optima, Andrew J. Combs, Kyle Fugatt, Kevin McFall 2017 Kennesaw State University

Autonomous Speed Control For Kia Optima, Andrew J. Combs, Kyle Fugatt, Kevin Mcfall

The Kennesaw Journal of Undergraduate Research

The standard method for speed control is the cruise control system built into most modern vehicles. These systems employ a PID controller which actuates the accelerator thus, in turn, maintains the desired vehicle speed. The main drawback of such a system is that typically the cruise control will only engage above 25 mph. The goal of this paper is to describe a system which we used to control vehicle speed from a stop to any desired speed using an Arduino microcontroller and a CAN BUS shield, from where autonomous features can be built upon. With this system, we were able ...


Investigating Read/Write Aggregation To Exploit Power Reduction Opportunities Using Dual Supply Voltages, Gu Yunfei 2017 Washington University in St Louis

Investigating Read/Write Aggregation To Exploit Power Reduction Opportunities Using Dual Supply Voltages, Gu Yunfei

Engineering and Applied Science Theses & Dissertations

Power consumption plays an important role in computer system design today. On-chip memory structures such as multi-level cache make up a significant proportion of total power consumption of CPU or Application-Specific Integrated Circuit (AISC) chip, especially for memory-intensive application, such as floating-point computation and machine learning algorithm. Therefore, there is a clear motivation to reduce power consumption of these memory structures that are mostly consisting of Static Random-Access Memory (SRAM) blocks. In this defense, I will present the framework of a novel dual-supply-voltage scheme that uses separate voltage levels for memory read and write operations. By quantitatively analyzing the cache ...


Vehicle Occupancy Detection System, Hannah Miller, Justin Wert, Kelsey Lunberg 2017 University of Wyoming

Vehicle Occupancy Detection System, Hannah Miller, Justin Wert, Kelsey Lunberg

Honors Theses AY 16/17

Personal vehicles often become traps for unattended occupants throughout the year. Sadly, this can lead to severe health complications or even death if exposed for too long. Although these complications arise primarily in hot climates, it has been demonstrated that they can happen in any environment. Prolonged exposure to an unfamiliar and often dangerous setting without competent human intervention can be detrimental to health. This problem predominantly impacts pets and young children. In an effort to reduce these preventable health complications and possible deaths, we have developed a vehicle occupancy detection system.

The goal of developing this occupancy detection system ...


Implementation Of Range Autofocus For Sar Radar Imaging, Nicholas J. Testin, Philip Davis 2017 Kennesaw State University

Implementation Of Range Autofocus For Sar Radar Imaging, Nicholas J. Testin, Philip Davis

Honors College Capstones and Theses

The range calculation for an FMCW radar depends on accurate linear modulation. In some circumstances, linear modulation may not be available and must be corrected for. This paper describes an autofocus technique used to correct for phase error due to non-linearities in the components of a FMCW radar. Also described here is the algorithm used in calculating the phase error and application of the phase correction with triangle modulation. Known errors were calculated at certain distances and applied to correcting the phase of data taken at similar distances. The results given were generated using a SAR working outside linear ranges.


An Exact Analysis For Four-Order Acousto-Optic Bragg Diffraction Which Incorporates Both Incident Light Angle And Sound Frequency Dependencies, Adeyinka Sunday Ademola 2017 University of Texas at Tyler

An Exact Analysis For Four-Order Acousto-Optic Bragg Diffraction Which Incorporates Both Incident Light Angle And Sound Frequency Dependencies, Adeyinka Sunday Ademola

Electrical Engineering Theses

This thesis extends the prior work which produced an exact solution to the four-order acousto-optic (AO) Bragg cell with assumed fixed center frequency and with exact Bragg angle incident light. The extension predicts the model that incorporates the dependencies of both the input angle of light and the sound frequency. Specifically, a generalized 4th order linear differential equation (DE), is developed from a simultaneous analysis of four coupled AO system of DEs. Through standard methods, the characteristic roots, which requires solving a quartic equation, is produced. Subsequently, a derived system of homogeneous solutions, which absorbs the roots obtained using ...


Design Of A Folded Cascode Operational Amplifier In A 1.2 Micron Silicon-Carbide Cmos Process, Kyle Addington 2017 University of Arkansas, Fayetteville

Design Of A Folded Cascode Operational Amplifier In A 1.2 Micron Silicon-Carbide Cmos Process, Kyle Addington

Electrical Engineering Undergraduate Honors Theses

This thesis covers the design of a Folded Cascode CMOS Operational Amplifier (Op-Amp) in Raytheon’s 1.2-micron Silicon Carbide (SiC) process. The use of silicon-carbide as a material for integrated circuits (ICs) is gaining popularity due to its ability to function at high temperatures outside the range of typical silicon ICs. The goal of this design was to create an operational amplifier suitable for use in a high temperature analog-to-digital converter application. The amplifier has been designed to have a DC gain of 50dB, a phase margin of 50 degrees, and a bandwidth of 2 MHz. The circuit’s ...


Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib 2017 University of Arkansas, Fayetteville

Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib

Theses and Dissertations

Proper short-circuit protection in dc distribution systems has provided an austere challenge to researchers as the development of commercially-viable equipment providing fast operation, coordination and reliability still continues. The objective of this thesis is to analyze issues associated with short-circuit protection of low-voltage dc (LVDC) distribution systems and propose a short-circuit protection methodology based on solid-state circuit breakers (SSCBs) that provides fault-current limiting (FCL). Simulation results for a simplified notional 1-kVdc distribution system, performed in MATLAB/SIMULINKTM, would be presented to illustrate that SSCB solutions based on reverse-blocking integrated gate-commutated thyristors (RB-IGCT) are feasible for low-voltage dc distribution systems but ...


Silicon Germanium Bicmos Comparator Designed For Use In An Extreme Environment Analog To Digital Converter, Benjamin Riley Sissons 2017 University of Arkansas, Fayetteville

Silicon Germanium Bicmos Comparator Designed For Use In An Extreme Environment Analog To Digital Converter, Benjamin Riley Sissons

Theses and Dissertations

This thesis demonstrates the process of creating a radiation hardened and extreme temperature operating comparator from start to finish in the 90 nm SiGe 9HP process node. This includes the entire design flow from examining comparator topologies, to designing the initial comparator circuits, to simulating the comparator over a temperature range of -196°C to 125°C, and finally the testing of the fabricated circuit. To verify the circuit would work at low temperatures, several new device models were created that could be used for simulations at -196°C. In addition to its properties as a standalone comparator, the circuit ...


Design And Test Of A Gate Driver With Variable Drive And Self-Test Capability Implemented In A Silicon Carbide Cmos Process, Matthew Barlow 2017 University of Arkansas, Fayetteville

Design And Test Of A Gate Driver With Variable Drive And Self-Test Capability Implemented In A Silicon Carbide Cmos Process, Matthew Barlow

Theses and Dissertations

Discrete silicon carbide (SiC) power devices have long demonstrated abilities that outpace those of standard silicon (Si) parts. The improved physical characteristics allow for faster switching, lower on-resistance, and temperature performance. The capabilities unleashed by these devices allow for higher efficiency switch-mode converters as well as the advance of power electronics into new high-temperature regimes previously unimaginable with silicon devices. While SiC power devices have reached a relative level of maturity, recent work has pushed the temperature boundaries of control electronics further with silicon carbide integrated circuits.

The primary requirement to ensure rapid switching of power MOSFETs was a gate ...


Hexarray: A Novel Self-Reconfigurable Hardware System, Fady Hussein 2017 Boise State University

Hexarray: A Novel Self-Reconfigurable Hardware System, Fady Hussein

Boise State University Theses and Dissertations

Evolvable hardware (EHW) is a powerful autonomous system for adapting and finding solutions within a changing environment. EHW consists of two main components: a reconfigurable hardware core and an evolutionary algorithm. The majority of prior research focuses on improving either the reconfigurable hardware or the evolutionary algorithm in place, but not both. Thus, current implementations suffer from being application oriented and having slow reconfiguration times, low efficiencies, and less routing flexibility. In this work, a novel evolvable hardware platform is proposed that combines a novel reconfigurable hardware core and a novel evolutionary algorithm.

The proposed reconfigurable hardware core is a ...


Stringless Guitar, Kue Z. Yang, Anthony Batey, Dominic Mercorelli, Nathaniel Hawk 2017 University of Akron

Stringless Guitar, Kue Z. Yang, Anthony Batey, Dominic Mercorelli, Nathaniel Hawk

Honors Research Projects

The aim of this project is to improve the design of a typical guitar by designing a digital stringless guitar. Due to the nonlinearities inherent in a guitar, it would be difficult to reproduce guitar tones by summing harmonic components; therefore, digital samples of guitar tones were taken in order to preserve these unique and wonderfully sounding tones. These digital samples were stored in the guitar and used to produce its tones when played. The digital guitar includes fingerboard position sensors as well as strum sensors for each string. The fingerboard position sensors detect the player’s fingers at discrete ...


Data Logging System For A Synthetic Aperture Radar Unit, Nicholas J. Testin, Philip Davis, Ian Dorell, Alexander Gillespie 2016 Kennesaw State University

Data Logging System For A Synthetic Aperture Radar Unit, Nicholas J. Testin, Philip Davis, Ian Dorell, Alexander Gillespie

Honors College Capstones and Theses

A small, existing radar unit lacked the ability to automatically store the data it was receiving, which made its use clunky and cumbersome. A system was constructed to allow an on-board microprocessor to track distance traveled, and automatically store the data output from the radar unit to a portable memory unit for later data processing. Distance traveled is determined using a specially designed mobile cart, which electronically converts the rotation of a wheel into an electrical signal while also providing stability for taking accurate radar measurements. The output data from the radar unit is stored as a properly-formatted sound file ...


Design, Analysis And Simulation Of A Jitter Reduction Circuit (Jrc) System At 1ghz, RUN BIN YU 2016 California Polytechnic State University, San Luis Obispo

Design, Analysis And Simulation Of A Jitter Reduction Circuit (Jrc) System At 1ghz, Run Bin Yu

Master's Theses and Project Reports

The clock signal is considered as the “heartbeat” of a digital system yet jitter which is a variation on the arrival time of the clock edge, could undermine the overall performance or even cause failures on the system. Deterministic jitter could be reduced during the designing process however random jitter during operation is somehow less-controllable and unavoidable. Being able to remove jitter on the clock would therefore play a vital role in system performance improvement.

This thesis implements a 1GHz fully feedforward jitter reduction circuit (JRC) which can be used as an on-chip IP core at clock tree terminals to ...


Active Contact Lens - Low Power Backscattering Sensor-To-Antenna Integration Circuitry, Caleb B. Porter 2016 California Polytechnic State University, San Luis Obispo

Active Contact Lens - Low Power Backscattering Sensor-To-Antenna Integration Circuitry, Caleb B. Porter

Electrical Engineering

The Active Contact Lens measures the cornea-scleral radius of the wearer’s eye, which correlates to intraocular pressure (IOP), Glaucoma’s primary indicator. IOP varies throughout the day, and is drastically different from person to person, so constantly measuring it over a period of a few days can provide individualized tracking of the disease’s development and will help doctors develop personalized treatment schedules to treat the disease more precisely.

The Active Contact Lens sensor measures strain, based on the cornea-scleral radius, and reports the results wirelessly, to allow monitoring of an individual’s IOP over time. The lens is ...


Accumulator Volume Sensor Final Project Report, Chris Naughton, Kinwei Yu, Michael George 2016 California Polytechnic State University, San Luis Obispo

Accumulator Volume Sensor Final Project Report, Chris Naughton, Kinwei Yu, Michael George

Mechanical Engineering

Accumulator Volume Sensing Team has developed two sensor designs aimed at detecting the position of the piston within a 4024 accumulator. The two designs include the use of a Renishaw LMA10 magnetic encoder and a SpectraSymbol HotPot linear potentiometer. The magnetic encoder solution drastically increases the accuracy of sensing the piston position compared to the current solutions of both a string-pot and linear variable differential transformer while costing slightly less. The linear potentiometer seeks to provide a solution that drastically decreases the cost compared to the present sensing methods. Both designs call for a modification to one half of the ...


Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri 2016 University of Arkansas, Fayetteville

Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri

Theses and Dissertations

Conventional integrated electronics have reached a physical limit, and their efficiency has been influenced by the generated heat in the high-density electronic packages. Integrated photonic circuits based on the highly developed Si complementary-metal-oxide-semiconductor (CMOS) infrastructure was proposed as a viable solution; however, Si-based emitters are the most challenging component for the monolithic integrated photonic circuits. The indirect bandgap of silicon and germanium is a bottleneck for the further development of photonic and optoelectronic integrated circuits.

The Ge1-xSnx alloy, a group IV material system compatible with Si CMOS technology, was suggested as a desirable material that theoretically exhibits a direct bandgap ...


Occupancy Estimation In Smart Building Using Hybrid Co2/Light Wireless Sensor Network, Chen Mao, Qian Huang 2016 Department of Electrical and Computer

Occupancy Estimation In Smart Building Using Hybrid Co2/Light Wireless Sensor Network, Chen Mao, Qian Huang

ASA Multidisciplinary Research Symposium

Smart building, which delivers useful services to residents at lowest cost and maximum comfort, has gained increasing attention in recent years. A variety of emerging information technologies have been adopted in modern buildings, such as wireless sensor networks, internet of things, big data analytics, deep machine learning, etc. Most people agree that a smart building should be energy efficient, and consequently, much more affordable to building owners. Building operation accounts for major portion of energy consumption in the United States. HVAC (heating, ventilating, and air conditioning) equipment is a particularly expensive and energy consuming of building operation. As a result ...


Controlling And Processing Core For Wireless Implantable Telemetry System, Naeeme Modir 2016 The University of Western Ontario

Controlling And Processing Core For Wireless Implantable Telemetry System, Naeeme Modir

Electronic Thesis and Dissertation Repository

Wireless implantable telemetry systems are suitable choices for monitoring various physiological parameters such as blood pressure and volume. These systems typically compose of an internal device implanted into a living body captures the physiological data and sends them to an external base station located outside of the body for further processing. The internal device usually consists of a sensor interface to convert the collected data to electrical signals; a digital core to digitize the analog signals, process them and prepare them for transmission; an RF front-end to transmit the data outside the body and to receive the required commands from ...


Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism In Spiking Neural Networks, Shrihari Sridharan, Gopalakrishnan Srinivasan, Kaushik Roy 2016 Purdue University

Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism In Spiking Neural Networks, Shrihari Sridharan, Gopalakrishnan Srinivasan, Kaushik Roy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Spiking Neural Networks (SNNs) are one of the recent advances in machine learning that aim to further emulate the computations performed in the human brain. The efficiency of such networks stems from the fact that information is encoded as spikes, which is a paradigm shift from the computing model of the traditional neural networks. Spike Timing Dependent Plasticity (STDP), wherein the synaptic weights interconnecting the neurons are modulated based on a pair of pre- and post-synaptic spikes is widely used to achieve synaptic learning. The learning mechanism is extremely sensitive to the parameters governing the neuron dynamics, the extent of ...


Low-Noise Micro-Power Amplifiers For Biosignal Acquisition, Tan Yang 2016 University of Tennessee, Knoxville

Low-Noise Micro-Power Amplifiers For Biosignal Acquisition, Tan Yang

Doctoral Dissertations

There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors.

Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise ...


Digital Commons powered by bepress