Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,567 Full-Text Articles 3,776 Authors 866,467 Downloads 86 Institutions

All Articles in Electromagnetics and Photonics

Faceted Search

2,567 full-text articles. Page 1 of 82.

The Effect Of A Ferrite-Core Relay Vs. An Air-Core Relay On The Output Power Characteristics Of A Three-Coil Wireless Power Transfer System, Jakob L. White 2021 Portland State University

The Effect Of A Ferrite-Core Relay Vs. An Air-Core Relay On The Output Power Characteristics Of A Three-Coil Wireless Power Transfer System, Jakob L. White

University Honors Theses

The purpose of this thesis is to determine the effect of using a ferrite-core relay on the output power characteristics of a three-coil, parallel-tuned, domino-resonator wireless power transfer (WPT) system in comparison to the effect of using an air-core relay in such a system. First, a general mathematical model is presented to describe both the ferrite-core-relay system and the air-core-relay system and to calculate their output power characteristics for seven different resistive loads at each of five different distance configurations between the coils. Next, experimental results are analyzed and compared to the mathematical results to confirm model accuracy. Finally, the ...


Comparative Study Of Nano-Rod And Nano-Sphere Based Localized Surface Plasmon Resonance Refractive Index Biosensors, Mariam M. Moussilli M. M. Moussilli, Abdul Rahman El Falou 2021 MS candidate, Faculty of Engineering, Beirut Arab University

Comparative Study Of Nano-Rod And Nano-Sphere Based Localized Surface Plasmon Resonance Refractive Index Biosensors, Mariam M. Moussilli M. M. Moussilli, Abdul Rahman El Falou

BAU Journal - Science and Technology

Localized Surface Plasmon Resonance (LSPR) waves generated by the interaction of light with noble metal nanoparticles has been of great interest in recent years due to the high sensitivity of the extinction spectra of these nanoparticles to the medium's surrounding refractive index up to the atomic level.

In this article, we simulate the extinction spectra of noble metal sphere and rod nanoparticles in order to study the effect of the geometrical shape and size of the nanoparticle on the sensitivity and detection accuracy performance parameters of the extinction spectra. We also simulated the response of the sphere and rod ...


On-Chip Nanoscale Plasmonic Optical Modulators, Abdalrahman Mohamed Nader Abdelhamid 2021 American University in Cairo

On-Chip Nanoscale Plasmonic Optical Modulators, Abdalrahman Mohamed Nader Abdelhamid

Theses and Dissertations

In this thesis work, techniques for downsizing Optical modulators to nanoscale for the purpose of utilization in on chip communication and sensing applications are explored. Nanoscale optical interconnects can solve the electronics speed limiting transmission lines, in addition to decrease the electronic chips heat dissipation. A major obstacle in the path of achieving this goal is to build optical modulators, which transforms data from the electrical form to the optical form, in a size comparable to the size of the electronics components, while also having low insertion loss, high extinction ratio and bandwidth. Also, lap-on-chip applications used for fast diagnostics ...


Cross-Junction Based Metasurfaces: A Roadmap To Fano Resonances, Mirna Soliman 2021 American University in Cairo

Cross-Junction Based Metasurfaces: A Roadmap To Fano Resonances, Mirna Soliman

Theses and Dissertations

The first part of the thesis presents a summary of the classification of materials, followed by the development of metamaterials and their salient role. Then, a study of metamaterials and the evolution of these 3D structures to 2D, known as metasurfaces, have been discussed. Moreover, the physics and practical interest behind Fano resonance have been discussed. Furthermore, the physical fundamentals guiding the performance of both the metamaterials and metasurfaces, including the temporal coupled-mode theory and the generalized laws of reflection and refraction, have been intensely investigated, along with some of the outstanding properties of the metamaterials. Then, a comparison between ...


Graphene As A Shielding Material For Sar Reduction In Human Head Using Rectangular And Circular Patch Antenna, Alka Singla Er., Anupma Marwaha Dr., Sanjay Marwaha Dr. 2021 SLIET Longowal

Graphene As A Shielding Material For Sar Reduction In Human Head Using Rectangular And Circular Patch Antenna, Alka Singla Er., Anupma Marwaha Dr., Sanjay Marwaha Dr.

Karbala International Journal of Modern Science

Nanomaterials pave the way for better performance in wireless applications due to their unique properties. Nowadays, these have been used as shield material in dipole antennas for a solution of reduction in SAR value. This work proposes the use of emerging graphene nanomaterial by comparing the performance for two different shapes of patch antenna namely rectangular and circular patch. With the growth in technology, the protection of human health is also mandatory so the work is planned to use graphene as a shielding material for SAR reduction in the human brain and it is proved that for rectangular and circular ...


Review And Analysis Of Methods For Measuring Concentration Of Suspended Substances And Active Sludge During Biological Treatment Of Waste Water, Maxsud Maxmudov, Siroj Nurov, Zafar Qo'ziev, Sanjar Sidiqov 2021 Bukhara engineering technological institute

Review And Analysis Of Methods For Measuring Concentration Of Suspended Substances And Active Sludge During Biological Treatment Of Waste Water, Maxsud Maxmudov, Siroj Nurov, Zafar Qo'ziev, Sanjar Sidiqov

Scientific-technical journal

This work analyzes and compares the measuring and technical characteristics of methods for measuring and controlling the parameters of activated sludge in the processes of biological wastewater treatment. As methods for measuring the concentration of activated sludge, methods such as the optical method, the ultrasonic method and the method for measuring the nuclear density of a liquid are considered. The principles of operation of each of these methods are illustrated with graphic drawings for more clarity of the interaction of the measuring signal with the particles of the measured medium. At the end of the work, conclusions on the characteristics ...


Ultra-High-Energy Neutrino Detection Antenna Simulations, Nicholas C. Garcia 2021 California Polytechnic State University, San Luis Obispo

Ultra-High-Energy Neutrino Detection Antenna Simulations, Nicholas C. Garcia

Electrical Engineering

Neutrinos allow researchers to investigate high-energy galactic phenomena, such as supernovae and black holes. Neutrinos interact with their surroundings via the weak nuclear force and therefore, travel unattenuated through space and are not deflected by electromagnetic fields. However, they do rarely interact with other particles. When neutrinos interact with nucleons (protons or neutrons) in a dielectric medium (i.e.: ice sheets), they are detectable through a cone of coherent electromagnetic radiation (Askaryan Radiation) created by the particle shower generated from the neutrino interaction [1]. The Radio Neutrino Observatory in Greenland (RNO-G) detects UHE neutrinos greater than 100 PeV (1015 ...


Led-Based Solar Simulator, Jonathan E. Honrada 2021 California Polytechnic State University, San Luis Obispo

Led-Based Solar Simulator, Jonathan E. Honrada

Electrical Engineering

Solar simulators are great laboratory tools that help users conduct tests with solar cells indoors. Conventional solar simulators typically use xenon arc bulbs as a light source, which can have considerable disadvantages. Recent projects have sought to design and implement LED-based solar simulators, as they are more power-efficient, inexpensive, and durable.

Based on these advantages, the goal of this project is to create an LED-based solar simulator that can replicate the characteristics of solar light, but also be tunable with controls. This broadens the testing capabilities of the device, allowing users to conduct tests with more narrow spectrums of light ...


Temperature-Dependent Magnetic Properties Of Magnetorheological Elastomers, Winnie M. Kiarie, Kinjal Gandha, David C. Jiles 2021 Iowa State University

Temperature-Dependent Magnetic Properties Of Magnetorheological Elastomers, Winnie M. Kiarie, Kinjal Gandha, David C. Jiles

Electrical and Computer Engineering Publications

We report on an investigation of the temperature-dependent magnetic properties of magnetorheological elastomers (MREs). These are a class of composites that consist of magnetically permeable particles dispersed in a nonmagnetic polymeric matrix. Under the application of an external magnetic field, a large deformation occurs altering the mechanical properties of these materials. Due to their magnetoelastic coupling response, these materials are finding an increasing interest among the scientific community. These polymer-based composites’ performance depends on many factors, which temperature is one of the biggest influencing factors requiring further investigation. In this work, the magnetic properties of isotropic and anisotropic polyurethane-based MRE ...


Identification And Utilization Of Genetic Determinants Of Trait Measurement Errors In Image-Based, High-Throughput Phenotyping, Yan Zhou, Aaron Kusmec, Seyed Vahid Mirnezami, Lakshmi Attigala, Srikant Srinivasan, Talukder Zaki Jubery, James C. Schnable, Maria G. Salas Fernandez, Baskar Ganapathysubramanian, Patrick S. Schnable 2021 Iowa State University

Identification And Utilization Of Genetic Determinants Of Trait Measurement Errors In Image-Based, High-Throughput Phenotyping, Yan Zhou, Aaron Kusmec, Seyed Vahid Mirnezami, Lakshmi Attigala, Srikant Srinivasan, Talukder Zaki Jubery, James C. Schnable, Maria G. Salas Fernandez, Baskar Ganapathysubramanian, Patrick S. Schnable

Mechanical Engineering Publications

The accuracy of trait measurements greatly affects the quality of genetic analyses. During automated phenotyping, trait measurement errors, i.e., differences between automatically extracted trait values and ground truth, are often treated as random effects that can be controlled by increasing population sizes and/or replication number. By contrast, there is some evidence that trait measurement errors may be partially under genetic control. Consistent with this hypothesis, we observed substantial non-random, genetic contributions to trait measurement errors for five maize (Zea mays) tassel traits collected using an image-based phenotyping platform. The phenotyping accuracy varied according to whether a tassel exhibited ...


Effect Of Developer Temperature On Photoresist Contrast In Grayscale Lithography, Dale Farnan, George Patrick Watson 2021 Singh Center for Nanotechnology

Effect Of Developer Temperature On Photoresist Contrast In Grayscale Lithography, Dale Farnan, George Patrick Watson

Protocols and Reports

SPR 220-3 photoresist was spin-coated onto a silicon wafer, exposed using a Heidelberg DWL66+ laserwriter at different laser powers, and developed at different temperatures. The effect of developer temperature on photoresist contrast was examined. Results show that increasing developer temperature decreased photoresist contrast and increased required dose.


A Comprehensive Study On Printed Circuit Board Backdoor Coupling In High Intensity Radiated Fields Environments, Ryan Patrick Tortorich 2021 Louisiana State University and Agricultural and Mechanical College

A Comprehensive Study On Printed Circuit Board Backdoor Coupling In High Intensity Radiated Fields Environments, Ryan Patrick Tortorich

LSU Doctoral Dissertations

Due to the prevalence of unintentional electromagnetic interference (EMI) and the growth of intentional electromagnetic interference (IEMI) or high power microwave (HPM) sources, it is now more important than ever to understand how electronic systems are affected by high intensity radiated fields (HIRF) environments. Both historic events and experimental testing have demonstrated that HIRF environments are capable of disrupting and potentially damaging critical systems including but not limited to civil and military aircraft, industrial control systems (ICS), and internet of things (IoT) devices. However, there is limited understanding on the complex electromagnetic interactions that lead to such effects. This study ...


Optoelectronic Valley-Spin Qubits With Ambipolar Quantum Dots, Jeremy Tull 2021 University of Arkansas, Fayetteville

Optoelectronic Valley-Spin Qubits With Ambipolar Quantum Dots, Jeremy Tull

Electrical Engineering Undergraduate Honors Theses

The current limitations of qubit-based processors are caused by imperfections in quantum gates, leading to a lack of gate fidelity. Gate fidelity can be refined by extending the coherence of qubits and reducing logic operation speed. A potential solution is to develop a hybrid qubit that has the coherence of electrically-controlled quantum dots and the gate speed of their optically-controlled counterparts. Quantum bits that utilize ultrafast optical gating to perform gate operations require precise control of the gating pulse duration. Optical dispersion can cause adverse effects pulse duration, such as pulse broadening, so dispersion-compensation techniques must be employed; by properly ...


Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran 2021 University of Arkansas, Fayetteville

Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran

Graduate Theses and Dissertations

Infrared (IR) radiation spans the wavelengths of the windows: (1) near-IR region ranging from 0.8 to 1.0 μm, (2) shortwave IR (SWIR) ranging from 1.0 to 3.0 μm, (3) mid-wave IR (MWIR) region covering from 3.0 to 5.0 μm, (4) longwave IR (LWIR) spanning from 8.0 to 12.0 μm, and (5) very longwave IR extending beyond 12.0 μm. The MWIR and LWIR regions are important for night vision in the military, and since the atmosphere does not absorb at these wavelengths, they are also used for free-space communications and astronomy. Automotive ...


Analysis Of Photodetector Based On Zinc Oxide And Cesium Lead Bromide Heterostructure With Interdigital Metallization, Tanveer Ahmed Siddique 2021 University of Arkansas, Fayetteville

Analysis Of Photodetector Based On Zinc Oxide And Cesium Lead Bromide Heterostructure With Interdigital Metallization, Tanveer Ahmed Siddique

Graduate Theses and Dissertations

In this thesis, photodetector based on the zinc oxide and cesium lead bromide hetero structure were fabricated and characterized. Zinc oxide (ZnO) nanoparticles were synthesized using solution processing and cesium lead bromide (CsPbBr3) thin film was synthesized using two step deposition method. Three phonon modes were obtained by the Raman spectroscopy of ZnO nanoparticles. X-ray diffraction spectra of ZnO exhibits five exciton peaks which denotes that the synthesized ZnO structure was of good crystallinity with wurtzite hexagonal phase. The absorbance spectrum of ZnO shows the bandgap (Eg) in the order of 3.5 eV that aligns with reported results. The ...


Characterization Of Gesn Semiconductors For Optoelectronic Devices, Hryhorii Stanchu 2021 University of Arkansas, Fayetteville

Characterization Of Gesn Semiconductors For Optoelectronic Devices, Hryhorii Stanchu

Graduate Theses and Dissertations

Germanium-tin alloys with Sn compositions higher than 8 at. % to 10 at. % have recently attracted significant interest as a group IV semiconductor that is ideal for active photonics on a Si substrate. The interest is due to the fact that while at a few percent of Sn, GeSn is an indirect bandgap semiconductor, at about 8 to 10 at. % Sn, GeSn transitions to a direct bandgap semiconductor. This is at first surprising since the solid solubility of Sn in Ge under equilibrium growth conditions is limited to only about 1 at. %. However, under non-equilibrium growth conditions, Sn concentrations in GeSn ...


Quantum Dynamical Phenomena In Non-Hermitian And Magnomechanical Systems, Saeid Vashahri Ghamsari 2021 University of Arkansas, Fayetteville

Quantum Dynamical Phenomena In Non-Hermitian And Magnomechanical Systems, Saeid Vashahri Ghamsari

Graduate Theses and Dissertations

In this dissertation, we have investigated quantum dynamics via three case studies. First, we studied a system of two coupled waveguides respectively carrying optical damping and optical gain in addition to squeezing elements in one or both waveguides. Such a system is expected to generate highly entangled light fields in the two waveguides. We, however, show that the degree of the created entanglement is significantly affected by the quantum noises associated with the amplification and dissipation. Because of the noise effect, one can only have nonzero entanglement for a limited time interval. Second, we generalized the first project by considering ...


A Magneto-Mechanical Piezoelectric Energy Harvester Designed To Scavenge Ac Magnetic Field From Thermal Power Plant With Power-Line Cables, Quan Wang, Kyung-Bum Kim, Sang-Bum Woo, Yooseob Song, Tae-Hyun Sang 2021 The University of Texas Rio Grande Valley

A Magneto-Mechanical Piezoelectric Energy Harvester Designed To Scavenge Ac Magnetic Field From Thermal Power Plant With Power-Line Cables, Quan Wang, Kyung-Bum Kim, Sang-Bum Woo, Yooseob Song, Tae-Hyun Sang

Civil Engineering Faculty Publications and Presentations

Piezoelectric energy harvesters have attracted much attention because they are crucial in portable industrial applications. Here, we report on a high-power device based on a magneto-mechanical piezoelectric energy harvester to scavenge the AC magnetic field from a power-line cable for industrial applications. The electrical output performance of the harvester (×4 layers) reached an output voltage of 60.8 Vmax, an output power of 215 mWmax (98 mWrms), and a power density of 94.5 mWmax/cm3 (43.5 mWrms/cm3) at an impedance matching of 5 kΩ under a magnetic field of 80 ...


Theory And Application Of Dielectric Rod Antennas And Arrays, Gabriel Saffold 2021 University of South Florida

Theory And Application Of Dielectric Rod Antennas And Arrays, Gabriel Saffold

Graduate Theses and Dissertations

Dielectric rods have been used for many years as waveguides and radiators. Their low loss as a transmission line and tendency to radiate at discontinuities have proven useful in applications ranging from fiber optic cables to naval fire control radar. Although this technology is well es- tablished, advances in additive manufacturing techniques and associated materials combined with the ubiquity of wireless communications and their shift to higher frequencies have generated re- newed interest in dielectric rods. Dielectric rod antennas have moderate gain and less conductive loss at higher frequencies. Similar to other surface wave antennas, they can achieve broadband performance ...


Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde IV 2021 Air Force Institute of Technology

Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv

Faculty Publications

We present twisted spatiotemporal optical vortex (STOV) beams, which are partially coherent light sources that possess a coherent optical vortex and a random twist coupling their space and time dimensions. These beams have controllable partial coherence and transverse orbital angular momentum (OAM), which distinguishes them from the more common spatial vortex and twisted beams (known to carry longitudinal OAM) in the literature and should ultimately make them useful in applications such as optical communications and optical tweezing. We present the mathematical analysis of twisted STOV beams, deriving the mutual coherence function and linear and angular momentum densities. We simulate the ...


Digital Commons powered by bepress