Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

2228 Full-Text Articles 2998 Authors 457895 Downloads 58 Institutions

All Articles in Electromagnetics and Photonics

Faceted Search

2228 full-text articles. Page 1 of 67.

Suppression Of Magnetostructural Transition On Gdsige Thin Film After Thermal Cyclings, A. L. Pires, J. H. Belo, I. T. Gomes, Ravi L. Hadimani, Deborah L. Schlagel, Thomas A. Lograsso, David C. Jiles, A. M. L. Lopes, J. P. Araújo, A. M. Pereira 2018 Universidade do Porto

Suppression Of Magnetostructural Transition On Gdsige Thin Film After Thermal Cyclings, A. L. Pires, J. H. Belo, I. T. Gomes, Ravi L. Hadimani, Deborah L. Schlagel, Thomas A. Lograsso, David C. Jiles, A. M. L. Lopes, J. P. Araújo, A. M. Pereira

Ravi L Hadimani

The influence of thermal cycling on the microstructure, magnetic phase transition and magnetic entropy change of a Gd5Si1.3Ge2.7 thin film up to 1000 cycles is investigated. The authors found that after 1000 cycles a strong reduction of the crystallographic phase responsible for the magnetostructural transition (Orthorhombic II phase) occurs. This is attributed to chemical disorder, caused by the large number of expansion/compression cycles that the Orthorhombic II phase undergoes across the magnetostructural transition. The suppression of the magnetostructural transition corresponds to a drastic decrease of the thin film magnetic entropy change. These results reveal the importance of ...


Annealing Influence On The Magnetostructural Transition In Gd5si1.3ge2.7 Thin Films, A. L. Pires, J. H. Belo, I. T. Gomes, R. L. Hadimani, David C. Jiles, L .Fernandes, P. B. Tavares, J. P. Araújo, A. M. L. Lopes, A. M. Pereira 2018 Universidade de Lisboa

Annealing Influence On The Magnetostructural Transition In Gd5si1.3ge2.7 Thin Films, A. L. Pires, J. H. Belo, I. T. Gomes, R. L. Hadimani, David C. Jiles, L .Fernandes, P. B. Tavares, J. P. Araújo, A. M. L. Lopes, A. M. Pereira

Ravi L Hadimani

Due to the emerging cooling possibilities at the micro and nanoscale, such as the fast heat exchange rate, the effort to synthesize and optimize the magnetocaloric materials at these scales is rapidly growing. Here, we report the effect of different thermal treatments on Gd5Si1.3Ge2.7 thin film in order to evaluate the correlation between the crystal structure, magnetic phase transition and magnetocaloric effect. For annealing temperatures higher than 773 K, the samples showed a typical paramagnetic behavior. On the other hand, annealing below 773 K promoted the suppression of the magnetostructural transition at 190 K, while the magnetic transition ...


Magnetic Interaction And Electronic Transport In La0.4bi0.6mn0.5ti0.5o3 Manganite, Vijaylakshmi Dayal, Punith Kumar V., Ravi L. Hadimani, E. A. Balfour, H. Fu, David C. Jiles 2018 Maharaja Institute of Technology Mysore

Magnetic Interaction And Electronic Transport In La0.4bi0.6mn0.5ti0.5o3 Manganite, Vijaylakshmi Dayal, Punith Kumar V., Ravi L. Hadimani, E. A. Balfour, H. Fu, David C. Jiles

Ravi L Hadimani

We report magnetic interactions and electronic transport properties in La0.4Bi0.6Mn0.5Ti0.5O3 perovskite manganite synthesized using solid-state route. After characterizing the samples structurally, the systematic investigations of magnetic and electrical transport behaviors have been undertaken. It has been observed that at low temperatures near TC, the sample is magnetically frustrated leading to the second-order magnetic transition. A justification for the observed magnetic behavior has been explained based on Arrott's plot study. The resistivity as a function of temperature in the absence and the presence of applied magnetic field suggests semiconducting nature of the sample. The conduction of ...


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock 2017 University of Nebraska-Lincoln

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with ...


Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner 2017 University of Arkansas, Fayetteville

Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner

Theses and Dissertations

This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001” thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12” × 12” × 1” in total. We use a free-space broadband system comprised of a pair of ...


Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei 2017 University of Arkansas, Fayetteville

Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei

Theses and Dissertations

Nextnano³ software is a well-known package for simulating semiconductor band-structures at the nanoscale and predicting the general electronic structure. In this work, it is further demonstrated as a viable tool for the simulation of III-nitride solar cells. In order to prove this feasibility, the generally accepted solar cell simulation package, PC1D, was chosen for comparison. To critique the results from both PC1D and Nextnano3, the fundamental drift-diffusion equations were used to calculate the performance of a simple p-n homojunction solar cell device analytically. Silicon was picked as the material for this comparison between the outputs of the two simulators as ...


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie 2017 University of Dayton

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window.

The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video ...


Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov 2017 University of Dayton

Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

In target-in-the-loop laser beam projection scenarios typical of remote sensing, directed energy, and adaptive optics applications, a transmitted laser beam propagates through an optically inhomogeneous medium toward a target, scatters off the target’s rough surface, and returns back to the transceiver plane. Coherent beam scattering off the randomly rough surface results in strong speckle modulation in the transceiver plane. This speckle modulation has been a long-standing challenge that limits performance of remote sensing, active imaging, and adaptive optics techniques. Using physics-based models of laser beam scattering off a randomly rough surface, we show that received speckle-field spatial and temporal ...


Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov 2017 Optonicus

Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

A laser beam propagation model that accounts for the joint effect of atmospheric turbulence and refractivity is introduced and evaluated through numerical simulations. In the numerical analysis of laser beam propagation, refractive index inhomogeneities along the atmospheric propagation path were represented by a combination of the turbulence-induced random fluctuations described in the framework of classical Kolmogorov turbulence theory and large-scale refractive index variations caused by the presence of an inverse temperature layer. The results demonstrate that an inverse temperature layer located in the vicinity of a laser beam’s propagation path may strongly impact the laser beam statistical characteristics including ...


Combating Ground Reflection For Wireless Sensors, Ashutosh Tadkase, Nagarjun Srinivasan, Robert A. Iannucci 2017 Carnegie Mellon University

Combating Ground Reflection For Wireless Sensors, Ashutosh Tadkase, Nagarjun Srinivasan, Robert A. Iannucci

Bob Iannucci

Low-power sensing and communication technologies have evolved to the point where it is feasible to install intelligent, wirelessly-connected sensors pervasively on roadways to enable precise, real-time monitoring of traffic flows. Efficient operation of the sensing, computing and communications subsystems in these devices offers the possibility of battery lifetimes comparable to replacement cycles for normal raised pavement markers, making install-and-forget sensing a practical reality. But such unobtrusive mounting on the road surface brings with it an inherent problem. Data signals sent from the wireless devices in these sensors suffer from the effect of ground reflection which distort the antenna’s pattern ...


Spatial Division Multiplexing Using Ince-Gaussian Beams, Sahil Sakpal 2017 Southern Methodist University

Spatial Division Multiplexing Using Ince-Gaussian Beams, Sahil Sakpal

Electrical Engineering Theses and Dissertations

In space division multiplexing (SDM) the spatial modes of a multimode optical fiber are used as individual data channels. SDM gives another degree of freedom over wavelength for increasing data transmission rates. As a result, SDM is a potential solution for more than 400Gbit/s requirements in data centers where scaling data transmission rates with parallel single mode optical fibers is currently ubiquitous. However, due to mode coupling, i.e., spatial modes exchange of power, SDM may require multiple inputs multiple output digital signal processing (MIMO-DSP) to mitigate resulting mode crosstalk, the cost and complexity of which may be prohibited ...


Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu 2017 Purdue University

Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are useful tools to analyze brain activities given active stimulation. However, the electromagnetic noise from the MRI distorts the brain signal recording and damages the subject with excessive heat generated on the electrodes attached to the skin. MRI-compatible recording and stimulation systems previously developed at LIBI lab were capable of removing the electromagnetic noise during the imaging process. Previously, the hardware systems had required the integrative software that could control both circuits simultaneously and enable users to easily change recording and stimulation parameters. Graphical user interface (GUI) programmed with computer language informed ...


Two Senior Projects: 2.4 Ghz, 40% Efficiency Radio Frequency Amplifier, Ieee Design Contest, & Design And Implementation Of A Software Costas Loop For Audio Frequencies, Robert J. Tong 2017 California Polytechnic State University, San Luis Obispo

Two Senior Projects: 2.4 Ghz, 40% Efficiency Radio Frequency Amplifier, Ieee Design Contest, & Design And Implementation Of A Software Costas Loop For Audio Frequencies, Robert J. Tong

Electrical Engineering

How to Read this Document:

This document combines two senior project reports. The first senior project documents designing a class AB RF amplifier. The second, discusses the design and implementation of a software Costas loop for audio frequencies. The first report begins on the next page, while the Costas loop report starts on page 24. The two reports are orthogonal from one another. It is not a prerequisite to read the RF amplifier report before reading the Costas loop report. This document is merely two reports combined into one document. The second report, about the Costas loop, was written as ...


Optimization Of Miniaturized Resonant Microwave Cavities For Use In Q-Thrusters, Joshua Steven Pennington 2017 University of Arkansas, Fayetteville

Optimization Of Miniaturized Resonant Microwave Cavities For Use In Q-Thrusters, Joshua Steven Pennington

Theses and Dissertations

A gedankenexperiment was considered to compare a hypothetical thruster that used no reaction mass to propulsion methods currently in use. A brief discussion of previous research work done on closed resonant cavity thrust devices was conducted. Using the previous work as a template, a simulation plan was devised. Computational models of resonant microwave cavities were constructed and investigated using COMSOL software. These COMSOL simulations were verified against known analytical solutions using Matlab software as a computational tool. Multiphysics simulations were created to study the microwave heating environment of the resonant cavities. From the COMSOL study outputs, the electromagnetic field magnitude ...


Si-Based Germanium Tin Semiconductor Lasers For Optoelectronic Applications, Sattar H. Sweilim Al-Kabi 2017 University of Arkansas, Fayetteville

Si-Based Germanium Tin Semiconductor Lasers For Optoelectronic Applications, Sattar H. Sweilim Al-Kabi

Theses and Dissertations

Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied ...


Laser-Assisted Metal Organic Chemical Vapor Deposition Of Gallium Nitride, Hossein Rabiee Golgir 2017 University of Nebraska-Lincoln

Laser-Assisted Metal Organic Chemical Vapor Deposition Of Gallium Nitride, Hossein Rabiee Golgir

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

Due to its unique properties, gallium nitride is of great interest in industry applications including optoelectronics (LEDs, diode laser, detector), high power electronics, and RF and wirelss communication devices. The inherent shortcomings of current conventional deposition methods and the ever-increasing demand for gallium nitride urge extended efforts for further enhancement of gallium nitride deposition. The processes of conventional methods for gallium nitride deposition, which rely on thermal heating, are inefficient energy coupling routes to drive gas reactions. A high deposition temperature (1000-1100 °C) is generally required to overcome the energy barriers to precursor adsorption and surface adatom migration. However, there ...


Microwave Interferometry Diagnostic Applications For Measurements Of Explosives, Loren A. Kline 2017 California Polytechnic State University, San Luis Obispo

Microwave Interferometry Diagnostic Applications For Measurements Of Explosives, Loren A. Kline

Master's Theses and Project Reports

Microwave interferometry (MI) is a Doppler based diagnostic tool used to measure the detonation velocity of explosives, which has applications to explosive safety. The geometry used in existing MI experiments is cylindrical explosives pellets layered in a cylindrical case. It is of interest to Lawrence Livermore National Labs to measure additional geometries that may be overmoded, meaning that the geometries propagate higher-order transverse electromagnetic waves. The goal of my project is to measure and analyze the input reflection from a novel structure and to find a good frequency to use in an experiment using this structure. Two methods of determining ...


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay 2017 University of Dayton

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii ...


Recursive Non-Local Means Filter For Video Denoising With Poisson-Gaussian Noise, Redha A. Almahdi, Russell C. Hardie 2017 University of Dayton

Recursive Non-Local Means Filter For Video Denoising With Poisson-Gaussian Noise, Redha A. Almahdi, Russell C. Hardie

Russell C. Hardie

In this paper, we describe a new recursive Non-Local means (RNLM) algorithm for video denoising that has been developed by the current authors. Furthermore, we extend this work by incorporating a Poisson-Gaussian noise model. Our new RNLM method provides a computationally efficient means for video denoising, and yields improved performance compared with the single frame NLM and BM3D benchmarks methods. Non-Local means (NLM) based methods of denoising have been applied successfully in various image and video sequence denoising applications. However, direct extension of this method from 2D to 3D for video processing can be computationally demanding. The RNLM approach takes ...


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. LeMaster 2017 University of Dayton

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an ...


Digital Commons powered by bepress