Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,024 Full-Text Articles 2,733 Authors 951,997 Downloads 96 Institutions

All Articles in Electromagnetics and Photonics

Faceted Search

2,024 full-text articles. Page 5 of 84.

Materials Design For Energy Applications Using Ab- Initio Calculations, Hind Hemaidee Alqurashi 2022 University of Arkansas, Fayetteville

Materials Design For Energy Applications Using Ab- Initio Calculations, Hind Hemaidee Alqurashi

Graduate Theses and Dissertations

The structural, dynamical, electronic, and thermoelectric properties of rock-salt and wurtzite Cd1-xZnxO alloys, VTiRhZ (Al, Ga, In, Si, Ge, Sn) and ZrTiRhZ (Ge, Sn) quaternary Heusler alloys (QHAs) were investigated using density functional theory (DFT) and semi-classical Boltzmann transport theory. From these calculations, the alloys were identified as potential materials for future thermoelectric applications. Furthermore, the magnetic and spin-polarization properties of these QHAs were investigated. The total magnetic moments were found to be integer values for all QHAs. In addition, all studied QHAs except VTiRhAl possess a half-metallic behavior with a 100% spin-polarization. The half-metallic ferromagnetic behavior makes them promising …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik 2022 Clemson University

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke 2022 University of Arkansas, Fayetteville

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


Design And Operation Of A Microwave Flow Cytometer For Single Cell Detection And Identification, Jeffrey A. Osterberg 2022 Clemson University

Design And Operation Of A Microwave Flow Cytometer For Single Cell Detection And Identification, Jeffrey A. Osterberg

All Dissertations

Microwave dielectric sensing has become a popular technique in biological cell sensing for its potential in online, label-free, and real-time sensing. At microwave frequencies probing signals are sensitive to intracellular properties since they are able to penetrate cell membranes, making microwave flow cytometry a promising technology for label-free biosensing. In this dissertation a microwave flow cytometer is designed and used to measure single biological cells and micro particles. A radio frequency (RF)/microwave interferometer serves as the measurement system for its high sensitivity and tunability and we show that a two-stage interferometer can achieve up to 20 times higher sensitivity than …


Nonreciprocal Surface Waves On Gyrotropic Interfaces, Alexander Martin Holmes 2022 University of Wisconsin-Milwaukee

Nonreciprocal Surface Waves On Gyrotropic Interfaces, Alexander Martin Holmes

Theses and Dissertations

In this dissertation, the properties of highly nonreciprocal (unidirectional) surface waves guided along the interface between free-space and various 2D and 3D gyrotropic continua are investigated using analytic, numerical, and experimental methods. From a classical electromagnetics perspective, nonreciprocity in the dispersion of surface wave modes supported by the interface is achieved by breaking both time-reversal and space-inversion symmetries in the collective response of the waveguide, which consists of the two interfaced materials. More recently, however, a connection to momentum space topology via the bulk-edge correspondence principle has been made for gyrotropic continua, providing additional insights into the underlying physics that …


Fabrication Of Nb3Sn By Magnetron Sputtering For Superconducting Radiofrequency Application, Md Nizam Sayeed 2022 Old Dominion University

Fabrication Of Nb3Sn By Magnetron Sputtering For Superconducting Radiofrequency Application, Md Nizam Sayeed

Electrical & Computer Engineering Theses & Dissertations

Particle accelerators are considered as an important device that has wide applications in cancer treatment, sterilizing waste, preserving foods, ion implantation in semiconductor industry, and in production of isotopes for medical applications. Superconducting radiofrequency (SRF) cavities are the building blocks of a linear particle accelerator. Current particle accelerators use niobium (Nb) superconductors as the sheet material to fabricate a single SRF cavity for particle acceleration. With better superconducting properties (critical temperature Tc ~ 18.3 K, superheating field Hsh~ 400 mT), Nb3Sn is considered a potential candidate in SRF technology. Magnetron sputtering is a promising deposition …


A Study On Electromagnetic Topology Optimization Using Binary Particle Swarm Algorithm, Mohammad Sazzad Hossain 2022 University of New Mexico

A Study On Electromagnetic Topology Optimization Using Binary Particle Swarm Algorithm, Mohammad Sazzad Hossain

Electrical and Computer Engineering ETDs

Topology optimization is a state-of-the-art tool for detecting the best material layout in a physical space to obtain certain goals. Initially developed as a structural engineering tool, it has been recently used in electromagnetics and has shown immense potential. The aim of this work is to build a framework for applying the topology optimization method in electromagnetics using a modified binary particle swarm optimization (BPSO) algorithm. In this thesis, a very classic problem of coax to waveguide transition has been considered, and a novel solution has been given using topology optimization. The steps to implementing topology optimization using BPSO have …


Novel Materials And Devices For Terahertz Detection And Emission For Sensing, Imaging And Communication, Naznin Akter 2022 Florida International University

Novel Materials And Devices For Terahertz Detection And Emission For Sensing, Imaging And Communication, Naznin Akter

FIU Electronic Theses and Dissertations

Technical advancement is required to attain a high data transmission rate, which entails expanding beyond the currently available bandwidth and establishing a new standard for the highest data rates, which mandates a higher frequency range and larger bandwidth. The THz spectrum (0.1-10 THz) has been considered as an emerging next frontier for the future 5G and beyond technology. THz frequencies also offer unique characteristics, such as penetrating most dielectric materials like fabric, plastic, and leather, making them appealing for imaging and sensing applications. Therefore, employing a high-power room temperature, tunable THz emitters, and a high responsivity THz detector is essential. …


X-Band Rf Transmitter Design For Multi-Purpose Small Satellite Communication Operations, Omer F. Gumus 2022 California Polytechnic State University, San Luis Obispo

X-Band Rf Transmitter Design For Multi-Purpose Small Satellite Communication Operations, Omer F. Gumus

Master's Theses

This thesis provides a description of the analysis, design, and tests of an X-band RF Transmitter communication system for small satellites. X-band transmitter systems are becoming popular in the upcoming deep space missions. Most of the deep-space ground stations have been using X-band frequencies to receive or transmit signals. The X-band (<10 GHz) can offer lower atmospheric losses and up to a couple of Mbps data rates for multiple satellite operations. Nowadays, many small satellites have been using frequency bands such as VHF, UHF, L, and S-band frequencies for communication. From deep space to the ground station, the low-frequency ranges are inadequate in providing Mbps level data rates and enough bandwidth for deep space missions.

The main focus of this thesis was the development of the subsystems such as gain block amplifier, Mixer, Bandpass Filter, and RF power amplifier. The subsystems were designed separately, then they were connected together to perform an end-to-end system test. One of the thesis aims is to design …


Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers 2022 California Polytechnic State University, San Luis Obispo

Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers

Electrical Engineering

This product is a photophoretic trapping system which allows varying focal lengths to test which focal lengths are possible for trapping toner particles. This system establishes that there exists a maximum trapping distance limitation and is the first time the effect of focal length is studied in a photophoretic trapping system. Increasing photophoretic trapping focal length is necessary for improving this technology as a 3D display. The 3D imaging technology is realized by dragging a microscopic (micrometer-scale) particles with a laser beam to trace an image. This technology can display fully colored and high-resolution 3D images visible from almost any …


Nystrom Methods For High-Order Cq Solutions Of The Wave Equation In Two Dimensions, Erli Wind-Andersen 2022 New Jersey Institute of Technology

Nystrom Methods For High-Order Cq Solutions Of The Wave Equation In Two Dimensions, Erli Wind-Andersen

Dissertations

An investigation of high order Convolution Quadratures (CQ) methods for the solution of the wave equation in unbounded domains in two dimensions is presented. These rely on Nystrom discretizations for the solution of the ensemble of associated Laplace domain modified Helmholtz problems. Two classes of CQ discretizations are considered: one based on linear multistep methods and the other based on Runge-Kutta methods. Both are used in conjunction with Nystrom discretizations based on Alpert and QBX quadratures of Boundary Integral Equation (BIE) formulations of the Laplace domain Helmholtz problems with complex wavenumbers. CQ in conjunction with BIE is an excellent candidate …


Sub-Nyquist Optical Pulse Sampling For Photonic Blind Source Separation, Taichu Shi, Yang Qi, Weipeng Zhang, Paul Prucnal, Jie Li, Ben Wu 2022 Rowan University

Sub-Nyquist Optical Pulse Sampling For Photonic Blind Source Separation, Taichu Shi, Yang Qi, Weipeng Zhang, Paul Prucnal, Jie Li, Ben Wu

Henry M. Rowan College of Engineering Faculty Scholarship

We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals, and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulses collect samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short …


Design Of An Offner-Chrisp Imaging Spectrometer For A Planetary Fluorescence Instrument, Tristan Wells Carlson 2022 Washington University in St. Louis

Design Of An Offner-Chrisp Imaging Spectrometer For A Planetary Fluorescence Instrument, Tristan Wells Carlson

McKelvey School of Engineering Theses & Dissertations

Spectrometers have been an integral part of space exploration in the late 20th and 21st centuries and will continue to provide quantitative measurements to answer exciting questions like, “Is or was there life on other planets?” PERISCOPE, Probe for Exploring Regolith and Ice by Subsurface Classification of Organics, Polycyclic aromatic hydrocarbons, and Elements, is a next generation spectrometer designed to explore icy worlds like Europa. It uses time-resolved ultraviolet (UV) fluorescence spectroscopy, a technique that identifies organic molecules, polycyclic aromatic hydrocarbons (PAH), and rare earth elements (REE). Photon wavelength discrimination is very important for this technique and is accomplished by …


Mutual Coupling Reduction Techniques For Multi-Band Base Station Antennas, Evan Christopher Wayton 2022 Syracuse University

Mutual Coupling Reduction Techniques For Multi-Band Base Station Antennas, Evan Christopher Wayton

Dissertations - ALL

This dissertation proposes antenna design techniques which suppress mutual coupling in densely populated dual-polarized broadband multi-band base station antenna (BSA) arrays for improved radiation characteristics. Array face densification without the proposed techniques leads to undesirable interactions between arrays and radome cover. This research is supported by extensive full-wave electromagnetic simulations, characteristic mode analysis, equivalent circuit models, and array theory. The results are validated through measurements of the radiation patterns and scattering parameters of fabricated prototypes.Upon excitation of a mid-band (MB) array, an electrically long low-band (LB) parasitic, necessary for broadband matching of the baseline LB dipole, exhibits dipole-like induced currents …


Analysis And Implementation Of Low Fidelity Radar-Based Remote Sensing For Unmanned Aircraft Systems, Matthew Duck 2022 Mississippi State University

Analysis And Implementation Of Low Fidelity Radar-Based Remote Sensing For Unmanned Aircraft Systems, Matthew Duck

Theses and Dissertations

Radar-based remote sensing is consistently growing, and new technologies and subsequent techniques for characterization are changing the feasibility of understanding the environment. The emergence of easily accessible unmanned aircraft system (UAS) has broadened the scope of possibilities for efficiently surveying the world. The continued development of low-cost sensing systems has greatly increased the accessibility to characterize physical phenomena. In this thesis, we explore the viability and implementation of using UAS as a means of radar-based remote sensing for ground penetrating radar (GPR) and polarimetric scatterometry. Additionally, in this thesis, we investigate the capabilities and implementations of low-cost microwave technologies for …


Design, Implementation, And Test Of Spacecraft Antennae And A Ground Station For Mesat1, Travis Russell 2022 University of Maine

Design, Implementation, And Test Of Spacecraft Antennae And A Ground Station For Mesat1, Travis Russell

Electronic Theses and Dissertations

MESAT1 is a CubeSat that was proposed by the University of Maine in response to NASA's CubeSat Launch Initiative, and in early 2020 was selected by NASA to be launched into a Low Earth Orbit (LEO) in June of 2022. The satellite will carry four low-cost complementary metal–oxide–semiconductor (CMOS) cameras which serve as sensing instruments for three science missions proposed by K-12 schools in Maine. The cameras will periodically take pictures of Earth to analyze water turbidity, identify urban heat islands, and predict harmful algal blooms. The multi-spectral image data is packed into frames and downlinked as Binary Phase-Shift Keying …


Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar 2022 Clemson University

Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar

All Dissertations

This dissertation uses porous silicon as a material platform to explore novel optical effects in three domains: (i) It studies dispersion engineering in integrated waveguides to achieve high performance group index sensing. With proper design parameters, the sensor waveguides can theoretically achieve 6 times larger group index shift compared to the actual bulk effective refractive index shift. We demonstrate the guided mode confinement factor to be a key parameter in design and implementation of these waveguides. (ii) It explores multicolor laser illumination to experimentally demonstrate perceptually enhanced colorimetric sensing, overcoming the limitations faced by many contemporary colorimetric sensors. Our technique …


Understanding The Radiation Effects On Fiber Optic Sensors, Sohel Rana 2022 Boise State University

Understanding The Radiation Effects On Fiber Optic Sensors, Sohel Rana

Boise State University Theses and Dissertations

In this dissertation, the effects of radiation (gamma, neutron or mixed gamma and neutron) on optical fiber sensors are studied and new techniques for real-time measurement of radiation-induced macroscopic changes in optical fibers are presented. It is crucial among the research and development efforts in the nuclear energy field to conduct experiments in Advanced Test Reactor (ATR) to support lifetime extension, novel fuels and materials development, better fuel management, and enhanced safety of existing as well as future nuclear power plants (NPP). Due to their unparalleled and unique advantages over traditional sensors, optical fiber sensors are deemed potential candidates for …


Measuring The Electrical Properties Of 3d Printed Plastics In The W-Band, Noah Gregory 2022 University of Arkansas, Fayetteville

Measuring The Electrical Properties Of 3d Printed Plastics In The W-Band, Noah Gregory

Electrical Engineering Undergraduate Honors Theses

3D printers are a method of additive manufacturing that consists of layering material to produce a 3D structure. There are many types of 3D printers as well as many types of materials that are capable of being printed with. The most cost-effective and well documented method of 3D printing is called Fused Deposition Modeling (FDM). FDM printers work by feeding a thin strand of plastic filament through a heated extruder nozzle. This plastic is then deposited on a flat, typically heated, surface called a print bed. The part is then built by depositing thin layers of plastic in the shape …


Electromagnetic Modeling Of A Wind Tunnel Magnetic Suspension And Balance System, Desiree Driver 2022 Old Dominion University

Electromagnetic Modeling Of A Wind Tunnel Magnetic Suspension And Balance System, Desiree Driver

Mechanical & Aerospace Engineering Theses & Dissertations

Wind tunnels are used to study forces and moments acting on an aerodynamic body. While most results involve some interference from the mechanical supports used to hold the model, a Magnetic Suspension and Balance System (MSBS) is void of these interferences and presents an ideal test scenario. To further investigate the feasibility of dynamic stability testing at supersonic speeds using a MSBS, a preliminary design idea is currently being developed using an existing MSBS in a subsonic wind tunnel. This review focuses on the development of a mathematical model to more accurately portray the capabilities of the 6 inch Massachusetts …


Digital Commons powered by bepress