Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

1,146 Full-Text Articles 1,570 Authors 552,765 Downloads 68 Institutions

All Articles in Signal Processing

Faceted Search

1,146 full-text articles. Page 1 of 36.

Weed And Crop Discrimination Through An Offline Computer Vision Algorithm, Phillip J. Putney 2018 Olivet Nazarene University

Weed And Crop Discrimination Through An Offline Computer Vision Algorithm, Phillip J. Putney

ELAIA

With the recent global interest in organic farming and cultivation, many people are turning away from chemical-based herbicides and moving towards alternate methods to extirpate weeds living amongst their crops. Of the methods proposed, robotic weed detection and removal is the most promising because of its possibility to be completely autonomous. Several robust, fully-autonomous robots have been developed, although none have been approved for commercial use. This paper proposes a weed and crop discrimination algorithm that utilizes an excessive green filter paired with principal component analysis to detect specific spatial frequencies within an image corresponding to different types of weeds ...


Vocal Processing With Spectral Analysis, Bradley J. Fitzgerald 2018 Olivet Nazarene University

Vocal Processing With Spectral Analysis, Bradley J. Fitzgerald

ELAIA

A well-known signal processing issue is that of the “cocktail party problem,” which A well-known signal processing issue is that of the “cocktail party problem,” which refers to the need to be able to separate speakers from a mixture of voices. A solution to this problem could provide insight into signal separation in a variety of signal processing fields. In this study, a method of vocal signal processing was examined to determine if principal component analysis of spectral data could be used to characterize differences between speakers and if these differences could be used to separate mixtures of vocal signals ...


Analysis And Simulation Of Convolution Reverb Using City Tech’S New Auditorium, Tian Leng 2018 CUNY New York City College of Technology

Analysis And Simulation Of Convolution Reverb Using City Tech’S New Auditorium, Tian Leng

Publications and Research

In digital signal processing, convolution reverb can simulate the reverberation of a real acoustic space. The acoustics of different seating areas in an auditorium can vary from each other. To determine the reverberant characteristics of City Tech new building’s auditorium, impulse response (IR) signals are recorded in five key locations of the auditorium.

Directly recorded balloon burst is chosen as the source of impulse source. An omnidirectional and a cardioid microphone with flat frequency response curves are used to record IR signals to 24-bit monophonic wav files. Each IR signal, along with a vocal, is convoluted in MATLAB through ...


Study On The Pattern Recognition Enhancement For Matrix Factorizations With Automatic Relevance Determination, hau tao 2018 California State University, San Bernardino

Study On The Pattern Recognition Enhancement For Matrix Factorizations With Automatic Relevance Determination, Hau Tao

Electronic Theses, Projects, and Dissertations

Learning the parts of objects have drawn more attentions in computer science recently, and they have been playing the important role in computer applications such as object recognition, self-driving cars, and image processing, etc… However, the existing research such as traditional non-negative matrix factorization (NMF), principal component analysis (PCA), and vector quantitation (VQ) has not been discovering the ground-truth bases which are basic components representing objects. On this thesis, I am proposed to study on pattern recognition enhancement combined non-negative matrix factorization (NMF) with automatic relevance determination (ARD). The main point of this research is to propose a new technique ...


3d Signal Strength Mapping Of 2.4ghz Wifi Networks, Brett D. Glidden 2018 California Polytechnic State University, San Luis Obispo

3d Signal Strength Mapping Of 2.4ghz Wifi Networks, Brett D. Glidden

Electrical Engineering

Many commercial businesses operate out of multi-story office buildings. These companies often use many Wi-Fi access points to set up their own wireless network. IT personnel determine proper Wi-Fi access point placement using Wi-Fi strength maps. Conventional Wi-Fi strength maps only provide a two-dimensional view representing the wireless access point's effective range. The signal quality and strength measurements do not include changing vertical elevation. Efficient network layout in a multi-story building requires a system calculating signal quality metrics in three dimensions.

This project involves designing and prototyping a system to achieve 2.4GHz Wi-Fi signal quality measurements in a ...


Distance-Based Cluster Head Election For Mobile Sensing, Ruairí de Fréin, Liam O'Farrell 2018 Technological University Dublin

Distance-Based Cluster Head Election For Mobile Sensing, Ruairí De Fréin, Liam O'Farrell

Conference papers

Energy-efficient, fair, stochastic leader-selection algorithms are designed for mobile sensing scenarios which adapt the sensing strategy depending on the mobile sensing topology. Methods for electing a cluster head are crucially important when optimizing the trade-off between the number of peer-to- peer interactions between mobiles and client-server interactions with a cloud-hosted application server. The battery-life of mobile devices is a crucial constraint facing application developers who are looking to use the convergence of mobile computing and cloud computing to perform environmental sensing. We exploit the mobile network topology, specifically the location of mobiles with respect to the gateway device, to stochastically ...


Transcribing Braille Code: Learning Equations Across Platforms, Deegan Atha, Courtney Balogh 2018 Purdue University

Transcribing Braille Code: Learning Equations Across Platforms, Deegan Atha, Courtney Balogh

Purdue Journal of Service-Learning and International Engagement

Deegan Atha, a graduating senior in electrical engineering and a future engineer, is interested in human-centered design and developing technology that helps students engage and be successful in STEM.

Courtney Balogh, a junior in mechanical engineering, is interested in human-centered design and the importance it plays in product development. Deegan and Courtney are members of the Purdue EPICS project, Learning Equations Across Platforms (LEAP). They partnered with the Indiana School for the Blind and Visually Impaired (ISBVI) to develop a braille transcription device and web application that converts braille to print in real time.


Erasure Coding For Distributed Matrix Multiplication For Matrices With Bounded Entries, Li Tang, Konstantinos Konstantinidis, Aditya Ramamoorthy 2018 Iowa State University

Erasure Coding For Distributed Matrix Multiplication For Matrices With Bounded Entries, Li Tang, Konstantinos Konstantinidis, Aditya Ramamoorthy

Electrical and Computer Engineering Publications

Distributed matrix multiplication is widely used in several scientific domains. It is well recognized that computation times on distributed clusters are often dominated by the slowest workers (called stragglers). Recent work has demonstrated that straggler mitigation can be viewed as a problem of designing erasure codes. For matrices A and B, the technique essentially maps the computation of ATB into the multiplication of smaller (coded) submatrices. The stragglers are treated as erasures in this process. The computation can be completed as long as a certain number of workers (called the recovery threshold) complete their assigned tasks. We present a novel ...


End-To-End Deep Learning Systems For Scene Understanding, Path Planning And Navigation In Fire Fighter Teams, Manish Bhattarai 2018 University of New Mexico

End-To-End Deep Learning Systems For Scene Understanding, Path Planning And Navigation In Fire Fighter Teams, Manish Bhattarai

Shared Knowledge Conference

Firefighting is a dynamic activity with many operations occurring simultaneously. Maintaining situational awareness, defined as knowledge of current conditions and activities at the scene, are critical to accurate decision making. Firefighters often carry various sensors in their personal equipment, namely thermal cameras, gas sensors, and microphones. Improved data processing techniques can mine this data more effectively and be used to improve situational awareness at all times thereby improving real-time decision making and minimizing errors in judgment induced by environmental conditions and anxiety levels. This objective of this research employs state of the art Machine Learning (ML) techniques to create an ...


1 - A Comprehensive Study Of Motor Imagery Eeg-Based Classification Using Computational Analysis, Justin McCorkle, Andrew Kalaani 2018 Georgia Southern University

1 - A Comprehensive Study Of Motor Imagery Eeg-Based Classification Using Computational Analysis, Justin Mccorkle, Andrew Kalaani

Georgia Undergraduate Research Conference (GURC)

Brain computer interfaces (BCI) are systems that integrate a user’s neural features with robotic machines to perform tasks. BCI systems are very unstable still due to Electroencephalography (EEG) having interference from unanticipated noise. Using Independent Component Analysis (ICA), a novel variable threshold model for noise feature extraction. The de-noised EEG data is classified with a high accuracy of more than 94% when using artificial neural networks. The effectiveness of the proposed variable threshold model is validated by the significant reduction in the variance of user classification accuracy across multiple sessions. Nonetheless, based on the variance and classification, subjects are ...


A Deep Learning-Based Approach For Fault Diagnosis Of Roller Element Bearings, Mohammakazem Sadoughi, Austin Downey, Garrett Bunge, Aditya Ranawat, Chao Hu, Simon Laflamme 2018 Iowa State University

A Deep Learning-Based Approach For Fault Diagnosis Of Roller Element Bearings, Mohammakazem Sadoughi, Austin Downey, Garrett Bunge, Aditya Ranawat, Chao Hu, Simon Laflamme

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

Condition monitoring and fault detection of roller element bearings is of vital importance to ensuring safe and reliable operation of rotating machinery systems. Over the past few years, convolutional neural network (CNN) has been recognized as a useful tool for fault detection of roller element bearings. Unlike the traditional fault diagnosis approaches, CNN does not require manually extracting the fault-related features from the raw sensor data and most CNN-based fault diagnosis approaches feed the raw or shallowly pre-processed data as the training/testing inputs to a CNN model, thereby avoiding the need for manual feature extraction. As such, these approaches ...


Signal Identification In Discrete-Time Based On Internal-Model-Principle, Jie Chen 2018 The University of Western Ontario

Signal Identification In Discrete-Time Based On Internal-Model-Principle, Jie Chen

Electronic Thesis and Dissertation Repository

This work presents an implementation of a signal identification algorithm which is based on the internal model principle. By using several internal models in feedback with a tuning function, this algorithm can decompose a signal into narrow-band signals and identify the frequencies, amplitudes and relative phases. A desired band-pass filter response can be achieved by selecting appropriate coefficients of the controllers and tuning functions, which can reject the noise and improve the performance. To achieve a result with fast transient characteristics, this system is then modified by adding a low-pass filter. This work is based on the previous work in ...


The Hilbert-Huang Transform: A Theoretical Framework And Applications To Leak Identification In Pressurized Space Modules, Kenneth R. Bundy 2018 University of Maine

The Hilbert-Huang Transform: A Theoretical Framework And Applications To Leak Identification In Pressurized Space Modules, Kenneth R. Bundy

Electronic Theses and Dissertations

Any manned space mission must provide breathable air to its crew. For this reason, air leaks in spacecraft pose a danger to the mission and any astronauts on board. The purpose of this work is twofold: the first is to address the issue of air pressure loss from leaks in spacecraft. Air leaks present a danger to spacecraft crew, and so a method of finding air leaks when they occur is needed. Most leak detection systems localize the leak in some way. Instead, we address the identification of air leaks in a pressurized space module, we aim to determine the ...


Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison 2018 Purdue University

Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Measurement of soil moisture, especially the root zone soil moisture, is important in agriculture, meteorology, and hydrology. Root zone soil moisture is concerned with the first meter down the soil. Active and passive remote sensing methods used today utilizing L-band(1-2GHz) are physically limited to a sensing depth of about 5 cm or less. To remotely sense the soil moisture in the deeper parts of the soil, the frequency should be lowered. Lower frequencies cannot be used in active spaceborne instruments because of their need for larger antennas, radio frequency interference (RFI), and frequency spectrum allocations. Ground-based passive remote sensing ...


Deep Neural Network Architectures For Modulation Classification Using Principal Component Analysis, Sharan Ramjee, Shengtai Ju, Diyu Yang, Aly El Gamal 2018 Purdue University

Deep Neural Network Architectures For Modulation Classification Using Principal Component Analysis, Sharan Ramjee, Shengtai Ju, Diyu Yang, Aly El Gamal

The Summer Undergraduate Research Fellowship (SURF) Symposium

In this work, we investigate the application of Principal Component Analysis to the task of wireless signal modulation recognition using deep neural network architectures. Sampling signals at the Nyquist rate, which is often very high, requires a large amount of energy and space to collect and store the samples. Moreover, the time taken to train neural networks for the task of modulation classification is large due to the large number of samples. These problems can be drastically reduced using Principal Component Analysis, which is a technique that allows us to reduce the dimensionality or number of features of the samples ...


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen 2018 University of Louisville

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed ...


Hand Movement Detection In Collaborative Learning Environment Videos, Callie J. Darsey 2018 University of New Mexico

Hand Movement Detection In Collaborative Learning Environment Videos, Callie J. Darsey

Electrical and Computer Engineering ETDs

Human activity detection in digital videos is currently attracting significant research interest. This problem is especially challenging for video datasets that have a lot of human activity, illumination noise, and structural noise. The video dataset associated with the Advancing Out of School Learning in Mathematics and Engineering (AOLME) project has these challenges. ALOME videos have been used in the study of human activities “in the wild”.

This thesis explores detection of hand movement using color and optical flow. Exploratory analysis considered the problem component wise on components created from thresholds applied to motion and color. The proposed approach uses patch ...


Mitigating Interference With Knowledge-Aided Subarray Pattern Synthesis And Space Time Adaptive Processing, Yongjun Yoon 2018 Air Force Institute of Technology

Mitigating Interference With Knowledge-Aided Subarray Pattern Synthesis And Space Time Adaptive Processing, Yongjun Yoon

Theses and Dissertations

Phased arrays are essential to airborne ground moving target indication (GMTI), as they measure the spatial angle-of-arrival of the target, clutter, and interference signals. The spatial and Doppler (temporal) frequency is utilized by space-time adaptive processing (STAP) to separate and filter out the interference from the moving target returns. Achieving acceptable airborne GMTI performance often requires fairly large arrays, but the size, weight and power (SWAP) requirements, cost and complexity considerations often result in the use of subarrays. This yields an acceptable balance between cost and performance while lowering the system’s robustness to interference. This thesis proposes the use ...


Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori 2018 Florida International University

Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori

FIU Electronic Theses and Dissertations

Mechanical durability of the structures should be continuously monitored during their operation. Structural health monitoring (SHM) techniques are typically used for gathering the information which can be used for evaluating the current condition of a structure regarding the existence, location, and severity of the damage. Damage can occur in a structure after long-term operating under service loads or due to incidents. By detection of these defects at the early stages of their growth and nucleation, it would be possible to not only improve the safety of the structure but also reduce the operating costs. The main goal of this dissertation ...


New Algorithms For Compressed Sensing Of Mri: Wtwts, Dwts, Wdwts, Srivarna Settisara Janney 2018 Kennesaw State University

New Algorithms For Compressed Sensing Of Mri: Wtwts, Dwts, Wdwts, Srivarna Settisara Janney

Master of Science in Computer Science Theses

Magnetic resonance imaging (MRI) is one of the most accurate imaging techniques that can be used to detect several diseases, where other imaging methodologies fail. MRI data takes a longer time to capture. This is a pain taking process for the patients to remain still while the data is being captured. This is also hard for the doctor as well because if the images are not captured correctly then it will lead to wrong diagnoses of illness that might put the patients lives in danger. Since long scanning time is one of most serious drawback of the MRI modality, reducing ...


Digital Commons powered by bepress