Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

287 Full-Text Articles 491 Authors 68587 Downloads 31 Institutions

All Articles in Nanotechnology Fabrication

Faceted Search

287 full-text articles. Page 1 of 13.

Rapid And Label-Free Detection Of Interferon Gamma Via An Electrochemical Aptasensor Comprising A Ternary Surface Monolayer On A Gold Interdigitated Electrode Array, Shaowei Ding, Curtis L. Mosher, Xian Y. Lee, Suprem R. Das, Allison A. Cargill, Xiaohui Tang, Bolin Chen, Eric S. McLamore, Carmen Gomes, Jesse M. Hostetter, Jonathan C. Claussen 2017 Iowa State University

Rapid And Label-Free Detection Of Interferon Gamma Via An Electrochemical Aptasensor Comprising A Ternary Surface Monolayer On A Gold Interdigitated Electrode Array, Shaowei Ding, Curtis L. Mosher, Xian Y. Lee, Suprem R. Das, Allison A. Cargill, Xiaohui Tang, Bolin Chen, Eric S. Mclamore, Carmen Gomes, Jesse M. Hostetter, Jonathan C. Claussen

Mechanical Engineering Publications

A label-free electrochemical impedance spectroscopy (EIS) aptasensor for rapid detection (<35 min) of interferon-gamma (IFN-γ) was fabricated by immobilizing a RNA aptamer capture probe (ACP), selective to IFN-γ, on a gold interdigitated electrode array (Au IDE). The ACP was modified with a thiol group at the 5′ terminal end and subsequently co-immobilized with 1,6-hexanedithiol (HDT) and 6-mercapto-1-hexanolphosphate (MCH) to the gold surface through thiol–gold interactions. This ACP/HDT-MCH ternary surface monolayer facilitates efficient hybridization with IFN-γ and displays high resistance to nonspecific adsorption of nontarget proteins [i.e., fetal bovine serum (FBS) and bovine serum albumin (BSA)]. The Au IDE functionalized with ACP/HDT-MCH was able to measure IFN-γ in actual FBS solution with a linear sensing range from 22.22 pM to 0.11 nM (1–5 ng/mL) and a detection limit of 11.56 pM. The ability to rapidly sense IFN-γ within this sensing range makes the developed electrochemical platform conducive toward in-field disease detection of a variety of diseases including paratuberculosis (i.e., Johne’s Disease). Furthermore, experimental results were numerically validated with an equivalent circuit model that elucidated the effects of the sensing process and the influence of the immobilized ternary monolayer on signal output. This is the first time that ternary surface monolayers have been used to selectively capture/detect IFN-γ on Au IDEs.


Strategies And Techniques For Fabricating Mems Bistable Thermal Actuators., Dilan Ratnayake 2016 University of Louisville

Strategies And Techniques For Fabricating Mems Bistable Thermal Actuators., Dilan Ratnayake

Electronic Theses and Dissertations

Bistable elements are beginning to appear in the field of MEMS as they allow engineers to design sensors and actuators which require no electrical power and possess mechanical memory. This research focuses on the development of novel strategies and techniques for fabricating MEMS bistable structures to serve as no electrical power thermal actuators. Two parallel strategies were explored for the design and fabrication of the critical bistable element. Both strategies involved an extensive material study on candidate thin film materials to determine their temperature coefficient of expansion and as-deposited internal stress properties. Materials investigated included titanium tungsten, Invar, silicon nitride ...


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox 2016 University of Maine

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external ...


Nanostructured Morphologies In Glassy Polymer Networks, Brian Greenhoe 2016 University of Southern Mississippi

Nanostructured Morphologies In Glassy Polymer Networks, Brian Greenhoe

Dissertations

The body of this work describes a novel approach for the dispersion of multi-walled carbon nanotubes in a high Tg epoxy prepolymer matrix using a twin screw high-shear continuous reactor. The method demonstrated improves on previous dispersion methods in several ways. It offers increased efficiency through excellent heat transfer, while being solvent-less, scale-able, and tailorable to drive dispersion states to judiciously chosen dispersion states. Furthermore, it was shown that dispersion state and agglomerate morphology can be directed, in several ways, through processing conditions and also by controlling the matrix viscosity profile through cure. Broadband dielectric spectroscopy, optical hot-stage microscopy ...


Dispersion Of Particles In Liquid Metal Using Contactless Electromagnetic Stirring, Koulis A. Pericleous, Valdis Bojarevics, Georgi S. Djambazov 2016 University of Greenwich

Dispersion Of Particles In Liquid Metal Using Contactless Electromagnetic Stirring, Koulis A. Pericleous, Valdis Bojarevics, Georgi S. Djambazov

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Wearable Piezotronic Devices For Heart Rate Monitoring, Adam J. Miller, Wenzhuo Wu Dr. 2016 Purdue University

Wearable Piezotronic Devices For Heart Rate Monitoring, Adam J. Miller, Wenzhuo Wu Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Self-powered multifunctional wearable devices that are capable of human-device interfacing are highly desired. Piezotronic devices utilize piezoelectricity and semiconductor properties to enable devices to have seamless interaction between human and device. One important use for piezotronic devices is for pressure sensing. Pressure sensing devices have been employed in smart skins, biomonitoring, gesture recognition, and many more applications. This study aims to create a flexible piezotronic device, specifically for use in pressure sensing to monitor heart rate. ZnO nanowires are grown on a flexible polymer substrate so that they can be made into wearable devices. A p-n heterojunction is formed by ...


Atomistic Configuration Interaction Simulation Tool For Semiconductor Based Quantum Computing Devices, Jingbo Wu, Archana Tankasala, Jim Fonseca, Rajib Rahman, Gerhard Klimeck 2016 Purdue University

Atomistic Configuration Interaction Simulation Tool For Semiconductor Based Quantum Computing Devices, Jingbo Wu, Archana Tankasala, Jim Fonseca, Rajib Rahman, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solid-state devices are promising candidates for quantum computing applications due to obvious advantages in compatibility with semiconductor fabrication technologies and the extremely long coherent times of electron and nuclear spins in these devices. In such devices, electron interactions are crucial for single and two qubit gate operations. Thus it is essential to evaluate these electron-electron interactions accurately for precise qubit control. It is shown that Atomistic Configuration Interaction can be used to accurately determine electron-electron interactions in realistic semiconductor quantum computing devices. In this work, an online simulation tool on Atomistic Configuration Interaction has been implemented and published on nanoHUB ...


Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism In Spiking Neural Networks, Shrihari Sridharan, Gopalakrishnan Srinivasan, Kaushik Roy 2016 Purdue University

Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism In Spiking Neural Networks, Shrihari Sridharan, Gopalakrishnan Srinivasan, Kaushik Roy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Spiking Neural Networks (SNNs) are one of the recent advances in machine learning that aim to further emulate the computations performed in the human brain. The efficiency of such networks stems from the fact that information is encoded as spikes, which is a paradigm shift from the computing model of the traditional neural networks. Spike Timing Dependent Plasticity (STDP), wherein the synaptic weights interconnecting the neurons are modulated based on a pair of pre- and post-synaptic spikes is widely used to achieve synaptic learning. The learning mechanism is extremely sensitive to the parameters governing the neuron dynamics, the extent of ...


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee 2016 University of Puerto Rico, Mayaguez

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term ...


Investigation Of Cnt-Induced Escherichia Coli Lysis And Protein Release, Abdollah Mosleh 2016 University of Arkansas, Fayetteville

Investigation Of Cnt-Induced Escherichia Coli Lysis And Protein Release, Abdollah Mosleh

Theses and Dissertations

This research investigated the use of carbon nanotubes (CNTs) as a treatment to increase the permeability of a bacterial cell wall. Recombinant Escherichia coli BL21 (DE3) containing a plasmid that expressed Green Fluorescent Protein (GFP) and -lactamase were exposed to CNTs under various levels of agitation for different times. Fluorescence assay for GFP, optical absorbance for -lactamase activity, and Transmission Electron Microscopy (TEM) were used to determine the amount of released protein, and visually examine the permeability enhancement of the cells, respectively. It was found that more -lactamase was present in the culture fluid after treatment with CNTs in a ...


Spin Curves For Microchem S1800 (1805, 1813, 1818) Series Positive Resist, Mohsen Azadi, Gerald G. Lopez 2016 Singh Center for Nanotechnology

Spin Curves For Microchem S1800 (1805, 1813, 1818) Series Positive Resist, Mohsen Azadi, Gerald G. Lopez

Tool Data

Spin curves for MicroChem's S1805, S1813, and S1818 were generated and mapped using the Filmetrics F50. Statistical measurements were performed (N=85) and are reported here.


Nanofabrication And Spectroscopy Of Magnetic Nanostructures Using A Focused Ion Beam, Ali Hadjikhani 2016 FIU

Nanofabrication And Spectroscopy Of Magnetic Nanostructures Using A Focused Ion Beam, Ali Hadjikhani

FIU Electronic Theses and Dissertations

This research used a focused ion beam in order to fabricate record small nano-magnetic structures, investigate the properties of magnetic materials in the rarely studied range of nanometer size, and exploit their extraordinary characteristics in medicine and nano-electronics. This study consists of two parts: (i) Fabrication and study of record small magnetic tunnel junctions (ii) Introduction of a novel method for detection of magnetoelectric nanoparticles (MENs) in the tissue.

A key challenge in further scaling of CMOS devices is being able to perform non-volatile logic with near zero power consumption. Sub-10-nm nanomagnetic spin transfer torque (STT) magnetic tunneling junctions (MTJs ...


Sonochemical Synthesis Of Zinc Oxide Nanostructures For Sensing And Energy Harvesting, Phani Kiran Vabbina 2016 Department of Electrical and Computer Engineering, Florida International University

Sonochemical Synthesis Of Zinc Oxide Nanostructures For Sensing And Energy Harvesting, Phani Kiran Vabbina

FIU Electronic Theses and Dissertations

Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on ...


The Important Contribution Of Photo-Generated Charges To The Silicon Nanocrystals Photo-Charging/Discharging-Response Time At Room Temperature In Mos-Photodetectors, Samir Chatbouri, Manel Troudi, Abdelaali Fargi, Adel Kalboussi, Abdelkader Souifi 2016 Faculty of Sciences of Monastir

The Important Contribution Of Photo-Generated Charges To The Silicon Nanocrystals Photo-Charging/Discharging-Response Time At Room Temperature In Mos-Photodetectors, Samir Chatbouri, Manel Troudi, Abdelaali Fargi, Adel Kalboussi, Abdelkader Souifi

Abdelaali Fargi

The results are reported of a detailed investigation into the photogenerated changes that occur in the capacitance–voltage (CV) characteristics of Metal-Oxide-Semiconductor (MOS) photodetector, having a silicon nanocrystals (Si-ncs) embedded in SiOx=1.5 tunnel oxide layers. In order to study the influence of photon energy on charging/discharging photo-response of nanocrystal-based MOS structures, we have examined photo-capacitance-voltage (photo-CV) measurements at both light intensities 45 μW and 75 μW and wavelengths 436 nm and 595 nm. The photo-CV measurements indicate the important contribution of photo-generated charges to the charging/discharging mechanism. The (Si-ncs) charging/discharging photo-response time is ...


Characteristics And Logic Simulation Of Triple Quantum Dot In Fork Geometry Design By Using Simon, Surya Ramadhan, Akhmad Alfaruq, Resa Pramudita, Muhammad Amin Sulthoni 2016 Institut Teknologi Bandung

Characteristics And Logic Simulation Of Triple Quantum Dot In Fork Geometry Design By Using Simon, Surya Ramadhan, Akhmad Alfaruq, Resa Pramudita, Muhammad Amin Sulthoni

Surya Ramadhan

Abstract— We had successfully simulated the behavior of triple quantum dot in fork geometric using Single Electron Simulator (SIMON). This paper will describe the phenomenon of quantum dot by giving some parameter such gate voltage variation, difference of tunnels capacitance, and change of resistivity at the tunnel junction. The result of this paper giving us many information about behavior of triple quantum dot in fork geometric and also at the end of simulation, we tried to make the similar function of logic gate from this design.


Genotoxicity Of Graphene In Escherichia Coli, Ananya Sharma 2016 University of Arkansas, Fayetteville

Genotoxicity Of Graphene In Escherichia Coli, Ananya Sharma

Theses and Dissertations

Rapid advances in nanotechnology necessitate assessment of the safety of nanomaterials in the resulting products and applications. One key nanomaterial attracting much interest in many areas of science and technology is graphene. Graphene is a one atom thick carbon allotrope arranged in a two-dimensional honeycomb lattice. In addition to being extremely thin, graphene has several extraordinary physical properties such as its exceptional mechanical strength, thermal stability, and high electrical conductivity. Graphene itself is relatively chemically inert and therefore pristine graphene must undergo a process called functionalization, which is combination of chemical and physical treatments that change the properties of graphene ...


Design And Implementation Of An Integrated Biosensor Platform For Lab-On-A-Chip Diabetic Care Systems, Khandaker Abdullah Al Mamun 2016 University of Tennessee - Knoxville

Design And Implementation Of An Integrated Biosensor Platform For Lab-On-A-Chip Diabetic Care Systems, Khandaker Abdullah Al Mamun

Doctoral Dissertations

Recent advances in semiconductor processing and microfabrication techniques allow the implementation of complex microstructures in a single platform or lab on chip. These devices require fewer samples, allow lightweight implementation, and offer high sensitivities. However, the use of these microstructures place stringent performance constraints on sensor readout architecture. In glucose sensing for diabetic patients, portable handheld devices are common, and have demonstrated significant performance improvement over the last decade. Fluctuations in glucose levels with patient physiological conditions are highly unpredictable and glucose monitors often require complex control algorithms along with dynamic physiological data. Recent research has focused on long term ...


Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism 2016 University of Arkansas, Fayetteville

Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism

Theses and Dissertations

UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today’s photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For ...


Advanced Graphene Microelectronic Devices, Chowdhury G. Al-Amin 2016 Florida International University

Advanced Graphene Microelectronic Devices, Chowdhury G. Al-Amin

FIU Electronic Theses and Dissertations

The outstanding electrical and material properties of Graphene have made it a promising material for several fields of analog applications, though its zero bandgap precludes its application in digital and logic devices. With its remarkably high electron mobility at room temperature, Graphene also has strong potential for terahertz (THz) plasmonic devices. However there still are challenges to be solved to realize Graphene’s full potential for practical applications.

In this dissertation, we investigate solutions for some of these challenges. First, to reduce the access resistances which significantly reduces the radio frequency (RF) performance of Graphene field effect transistors (GFETs), a ...


High Contrast 50kv E-Beam Lithography For Hsq Atop Diamond Using Espacer For Spin-On Charge Dissipation, Richard R. Grote, Lee C. Bassett, Gerald G. Lopez 2016 University of Pennsylvania

High Contrast 50kv E-Beam Lithography For Hsq Atop Diamond Using Espacer For Spin-On Charge Dissipation, Richard R. Grote, Lee C. Bassett, Gerald G. Lopez

Protocols and Reports

A high contrast HSQ process atop diamond is presented. A water soluable spin-on conductive layer called ESPACER is used as a charge dissipation layer in lieu of a metal thin film.


Digital Commons powered by bepress