Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,029 Full-Text Articles 2,760 Authors 951,997 Downloads 96 Institutions

All Articles in Electromagnetics and Photonics

Faceted Search

2,029 full-text articles. Page 7 of 84.

Development Of Holographic Phase Masks For Wavefront Shaping, Nafiseh Mohammadian 2022 University of Central Florida

Development Of Holographic Phase Masks For Wavefront Shaping, Nafiseh Mohammadian

Electronic Theses and Dissertations, 2020-

This dissertation explores a new method for creating holographic phase masks (HPMs), which are phase transforming optical elements holographically recorded in photosensitive glass. This novel hologram recording method allows for the fast production of HPMs of any complexity, as opposed to the traditional multistep process, which includes the design and fabrication of a master phase mask operating in the UV region before the holographic recording step. We holographically recorded transmissive HPMs that are physically robust (they are recorded in a silicate glass volume), can handle tens of kilowatts of continuous wave (CW) laser power, are un-erasable, user defined, require no …


Light Guiding And Concentrating Using Self-Collimating Spatially-Variant Photonic Crystals, Chun Xia 2022 University of Central Florida

Light Guiding And Concentrating Using Self-Collimating Spatially-Variant Photonic Crystals, Chun Xia

Electronic Theses and Dissertations, 2020-

Advances in integrated photonic devices require low loss, easy-to-integrate solutions for chip-to-chip and chip-to-fiber interfacing. Among the most common solutions are traditional lenses. However, circular lenses require additional mounting mechanisms to ensure proper alignment. Additionally, the beam routing functionality cannot be added to the traditional lenses unless they are combined with mirrors and operate in the reflection mode. In this dissertation, we investigate lens-embedded photonic crystals (LEPCs) as a solution to flat and multifunctional lenses. The concept is demonstrated by creating self-collimating lattices containing a gradient refractive index lens (GRIN-LEPC), a binary-shaped lens (B-LEPC), and a Fresnel-type binary-shaped lens (F-B-LEPC). …


Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich 2022 Old Dominion University

Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich

Physics Faculty Publications

We investigated the nonlinear Meissner effect (NLME) in Nb3Sn thin-film coplanar resonators by measuring the resonance frequency as a function of a parallel magnetic field at different temperatures. We used low rf power probing in films thinner than the London penetration depth λ(B) to significantly increase the field onset of vortex penetration and measure the NLME under equilibrium conditions. Contrary to the conventional quadratic increase of λ(B) with B expected in s-wave superconductors, we observed a nearly linear increase of the penetration depth with B. We concluded that this behavior of λ(B) is due to weak linked grain …


Optimization And Modeling Of Esd Protection Devices, Li Shen 2022 Missouri University of Science and Technology

Optimization And Modeling Of Esd Protection Devices, Li Shen

Masters Theses

“Transient voltage suppressors (TVS) are used to protect ICs (integrated circuits) against overvoltage, ESD (Electrostatic Discharge), inductive load switching, and even lightning strikes. In this research, a transient behavior model framework for ESD protection devices is used for modelling four different types of TVS (non-snapback, snapback, spark gap like device and varistor). The System-Efficient ESD Design (SEED) methodology is utilized to strengthen the trust in the model framework by efficient simulation of ESD interaction of the off-chip ESD protection devices with the IC ESD protection device and associated measurement data.

Improvements in the TVS transient response, accounting for conductivity modulation, …


A Computational Exploration Of The Scandate Cathode Surface, Shankar Miller-Murthy 2022 University of Kentucky

A Computational Exploration Of The Scandate Cathode Surface, Shankar Miller-Murthy

Theses and Dissertations--Chemical and Materials Engineering

The exact surface configuration of scandate cathodes has been a point of contention for the materials community for a long time. Without proper understanding of it and the related structures and emission mechanisms, scandate cathodes remain patchy and unreliable emitters. Thus, density functional theory techniques were applied to various potential surface arrangements and found that there are several low-energy surfaces with low work functions that incorporate a scandium interlayer between tungsten and oxygen or otherwise have a scandium-on-tungsten structure. Furthermore, it was discovered that adding a monolayer of scandium directly to a tungsten surface is surprisingly favorable, thermodynamically. While none …


Low Insertion-Loss Nanophotonic Modulators Through Epsilon-Near-Zero Material-Based Plasmon-Assisted Approach For Integrated Photonics, Mohammad Ariful Hoque Sojib 2022 Virginia Commonwealth University

Low Insertion-Loss Nanophotonic Modulators Through Epsilon-Near-Zero Material-Based Plasmon-Assisted Approach For Integrated Photonics, Mohammad Ariful Hoque Sojib

Theses and Dissertations

Electro-optic/absorption Modulators (EOM/EAMs) encode high-frequency electrical signals into optical signals. With the requirement of large packing density, device miniaturization is possible by confining light in a sub-wavelength dimension by utilizing the plasmonic phenomenon. In plasmon, energy gets transferred from light to the form of oscillation of free electrons on a surface of a metal at an interface between the metal and a dielectric. Plasmonic provides increased light-matter interaction (LMI) and thus making the light more sensitive to local refractive index change. Plasmonic-based integrated nanophotonic modulators, despite their promising features, have one key limiting factor of large Insertion Loss (IL) which …


Direct Laser Writing Below The Diffraction Limit By Exploring Multi-Pulse-Induced Physics, Boyang Zhou 2022 University of Central Florida

Direct Laser Writing Below The Diffraction Limit By Exploring Multi-Pulse-Induced Physics, Boyang Zhou

Electronic Theses and Dissertations, 2020-

Ultrafast laser ablation has enabled high-precision processing of a wide range of materials including metals, semiconductors, dielectrics, and polymers. Several laser nanostructuring methods exist, including those based on optical near-fields, special material properties, surface plasmons, and multiphoton absorption (MPA). Among these methods, the MPA method has the potential for nanoscale direct laser writing by using a simple experimental setup. However, the understanding of the fundamental mechanism involved in the laser ablation process is still incomplete, and it remains challenging to obtain a feature size much smaller than the diffraction-limited spot size. The goal of this research is to understand how …


Integrated Electro-Optic, Microwave, And Nonlinear Photonic Devices On Thin-Film Lithium Niobate, Milad Gholipour Vazimali 2022 University of Central Florida

Integrated Electro-Optic, Microwave, And Nonlinear Photonic Devices On Thin-Film Lithium Niobate, Milad Gholipour Vazimali

Electronic Theses and Dissertations, 2020-

Lithium niobate has numerous extraordinary features that make it useful for a wide range of applications, particularly in optics. The material's strong electro-optic effect and second-order nonlinearities are two prime examples with applications in optical modulation and wavelength conversion, respectively. The thin-film lithium niobate platform has revitalized the conventional applications of lithium niobate during the last decade. The platform is now one of the most actively investigated subdisciplines in integrated photonics. The waveguides on this innovative platform are high index contrast, resulting in a size reduction of more than 20 times and a bending radius decrease of about two orders …


Characterization And Modeling Of Esd Events, Risk And Protection, Jianchi Zhou 2022 Missouri University of Science and Technology

Characterization And Modeling Of Esd Events, Risk And Protection, Jianchi Zhou

Doctoral Dissertations

“The ESD (Electrostatic discharge) failures have been raising critical reliability problems in electronic devices design. However, not all the ESD scenarios have been specified by the IEC standard and the characterizations of the ESD risk for different scenarios are essential to evaluate the ESD robustness of the devices in the real word.

The insulation of plastic enclosures provides protection against ESD to the electronic system inside. However, seams between plastic parts are often unavoidable. Different plastic arrangements are constructed to investigate the spark length and current derivatives and to understand the ESD spark behavior for geometries having spark lengths longer …


Optical Signal Processing With Discrete-Space Metamaterials, Mohammad Moein Moeini 2022 Wayne State University

Optical Signal Processing With Discrete-Space Metamaterials, Mohammad Moein Moeini

Wayne State University Dissertations

As digital circuits are approaching the limits of Moore’s law, a great deal of efforthas been directed to alternative computing approaches. Among them, the old concept of optical signal processing (OSP) has attracted attention, revisited in the light of metamaterials and nano-photonics. This approach has been successful in realizing basic mathematical operations, such as derivatives and integrals, but it is difficult to be applied to more complex ones. Inspired by digital filters, we propose a radically new OSP approach, able to realize arbitrary mathematical operations over a nano-photonic platform. We demonstrate this concept for the case of spatial differentiation, image …


Diffractive Liquid Crystal Optical Elements For Near-Eye Displays, Jianghao Xiong 2022 University of Central Florida

Diffractive Liquid Crystal Optical Elements For Near-Eye Displays, Jianghao Xiong

Electronic Theses and Dissertations, 2020-

Liquid crystal planar optics (LCPO) with versatile functionalities is emerging as a promising candidate for overcoming various challenges in near-eye displays, like augmented reality (AR) and virtual reality (VR), while maintaining a small form factor. This type of novel optical element exhibits unique properties, such as high efficiency, large angular/spectral bandwidths, polarization selectivity, and dynamic modulation. The basic molecular configuration of these novel reflective LCPO is analyzed, based on the simulation of molecular dynamics. In contrast to previously assumed planar-twist structure, our analysis predicts a slanted helix structure, which agrees with the measured results. The optical simulation model is established …


Patterned Liquid Crystal Devices For Near-Eye Displays, Kun Yin 2022 University of Central Florida

Patterned Liquid Crystal Devices For Near-Eye Displays, Kun Yin

Electronic Theses and Dissertations, 2020-

As a promising next-generation display, augmented reality (AR) and virtual reality (VR) have shown attractive features and attracted broad interests from both academia and industry. Currently, these near-eye displays (NEDs) have enabled numerous applications, ranging from education, medical, entertainment, to engineering, with the help of compact and functional patterned liquid crystal (LC) devices. The interplay between LC patterns and NEDs stimulates the development of novel LC devices with unique surface alignments and volume structures, which in turn feedback to achieve more compact and versatile NEDs. This dissertation will focus on the patterned LC with applications in NEDs. Firstly, we propose …


Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer 2022 CUNY City College

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer

Dissertations and Theses

This thesis focuses on the key nonlinear optical effects that arise from the interactions of intense ultrafast laser pulses with various states of matter. These interactions involve electronic and molecular states and yield new information on the underlying fundamental processes that govern the molecular world. Modern day lasers offer ultrashort pulses, high intensities, and complex polarizations and wavefronts. These extreme conditions have profound effect on the optical properties and behaviors of electronic and molecular states within a material. The changes in these mechanisms effect generation of nonlinear optics, such supercontinuum (SC), stimulated Raman (SRS), self-focusing and filamentation, conical emission (CE), …


Volumetric Microfabrication With Structured Light, He Cheng 2022 University of Central Florida

Volumetric Microfabrication With Structured Light, He Cheng

Electronic Theses and Dissertations, 2020-

Multiphoton polymerization (MPP) as one of the direct laser writing techniques is capable of manufacturing three-dimensional (3D) micro-structures with complex shapes and novel functionalities. However, current MPP methods rely on point-by-point or layer-by-layer scanning and therefore are time-consuming. The low fabrication throughput of conventional MPP is the key factor that limits its wider adoption for industrial manufacturing over large surface area. One way to increase the fabrication speed is to turn layer-by-layer process into a volumetric process. An ideal volumetric printing method can fabricate structures with complex 3D geometry by single exposure and should be easy to implement. As a …


Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam 2022 West Virginia University

Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam

Graduate Theses, Dissertations, and Problem Reports

Real-time health monitoring of high temperature systems (>500oC) in harsh environments is necessary to prevent catastrophic events caused by structural failures, varying pressure, and chemical reactions. Conventional solid-state temperature sensors such as resistance temperature detectors (RTDs) and thermocouples are restricted by their operating environments, sensor dimensions and often require external power sources for their operation. The current work presents the research and development of RF-based passive wireless sensing technology targeting high temperatures and harsh environmental conditions. Passive wireless devices are generally classified as near-field and far-field devices based on the interrogation distance. Near-field sensors are placed at …


Modeling Strategy For Emi Filter And Flyback Transformer, Ruijie He 2022 Missouri University of Science and Technology

Modeling Strategy For Emi Filter And Flyback Transformer, Ruijie He

Doctoral Dissertations

“The switch-mode power supply is key to miniaturizing power adapters. However, the switching nature of the circuit introduces issues in conducted emissions. In a flyback converter, the transformer serves as the path for common mode current flowing from the primary side to the secondary side. Different winding technologies have been invented and implemented to reduce the capacitance between the primary side and the secondary side. But the repeatability of the winding is still poor due to the fluctuations of the winding machine. Thus, the resulting conducted emission has a fluctuation that can lead to failure in the compliance tests. EMI …


Magneto-Exothermic Catalytic Chemical Reaction Along A Curved Surface, Muhammad Ashraf, Uzma Ahmad, Saqib Zia, Rama S. R. Gorla, Amnah S. Al-Johani, Ilyas Khan, Mulugeta Andualem 2022 Air Force Institute of Technology

Magneto-Exothermic Catalytic Chemical Reaction Along A Curved Surface, Muhammad Ashraf, Uzma Ahmad, Saqib Zia, Rama S. R. Gorla, Amnah S. Al-Johani, Ilyas Khan, Mulugeta Andualem

Faculty Publications

In the current study, the physical behavior of the boundary layer flows along a curved surface owing exothermic catalytic chemical reaction, and the magnetic field is investigated. The mathematical model comprised of a part of momentum, energy, and mass equations, which are solved using a finite difference method along with primitive variable formulation. Numerical solutions, using the method of quantitative differentiation, are made with the appropriate choice of dimensionless parameters. Analysis of the results obtained shows that the field temperature and flow of fluids are strongly influenced by the combined effects of catalytic chemical reactions and the magnetic field. The …


Smart Uv-C Disinfectant Module, Nicole Baldy, Luke Rogers, Haitham Saleh 2022 The University of Akron

Smart Uv-C Disinfectant Module, Nicole Baldy, Luke Rogers, Haitham Saleh

Williams Honors College, Honors Research Projects

The Smart UV Disinfectant device shall sanitize objects which are 18”x14”x8” or smaller and less than 20 lbs. using UV-C light. This device should contain many safety measures to prevent human and animal exposure to the UV-C light and have no public touchpoints to operate the interface. In order to achieve the first objective, this device shall contain a "sanitizing chamber" which completely encloses the object to be sanitized to prevent outside exposure with detection of any lifeforms inside of the chamber; for the second objective, it will contain a wireless interface to an Android application which can be used …


Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman 2021 University of New Mexico - Main Campus

Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) is a detection technique that exploits the inherent sensitivity of a laser's frequency to the parameters of its cavity. Intracavity interferometry is orders of magnitude more sensitive than its extracavity alternatives. This dissertation improves on previous free-space proof-of-concept designs. By implementing the technique in fiber optics, using optical parametric oscillation, and investigating non-Hermitian quantum mechanics and dispersion tailoring enhancement techniques, IPI has become more applicable and sensitive. Ring and linear IPI configurations were realized in this work, both operating as bidirectional fiber optical parametric oscillators. The benefit of using externally pumped synchronous optical parametric oscillation is …


Using The Inelastic Background In Hard X-Ray Photoelectron Spectroscopy For A Depth-Resolved Analysis Of The Cds / Cu(In,Ga)Se < Inf > 2 < / Inf > Interface, Dirk Hauschild, Ralph Steininger, Dimitrios Hariskos, Wolfram Witte, Sven Tougaard, Clemens Heske, Lothar Weinhardt 2021 University of Nevada, Las Vegas

Using The Inelastic Background In Hard X-Ray Photoelectron Spectroscopy For A Depth-Resolved Analysis Of The Cds / Cu(In,Ga)Se < Inf > 2 < / Inf > Interface, Dirk Hauschild, Ralph Steininger, Dimitrios Hariskos, Wolfram Witte, Sven Tougaard, Clemens Heske, Lothar Weinhardt

Chemistry and Biochemistry Faculty Research

The inelastic background of hard x-ray photoelectron spectroscopy data is analyzed to paint a depth-resolved picture of the CdS/Cu(In,Ga)Se2 (CdS/CIGSe) layer structure. The CdS/CIGSe interface is the central component in next-generation chalcopyrite thin-film photovoltaic devices. By analyzing both, the (unscattered) core-level peaks and the inelastic background, and by varying the excitation photon energy from 2.1 up to 14 keV, we can derive photoemission information over a broad range of electron kinetic energies and, hence, sampling depths. With this complementary information, the CdS film thickness of a CdS/CIGSe interface can be accurately determined as a function of the CdS deposition time. …


Digital Commons powered by bepress