Open Access. Powered by Scholars. Published by Universities.®

Electronic Devices and Semiconductor Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

689 Full-Text Articles 1,194 Authors 277,141 Downloads 57 Institutions

All Articles in Electronic Devices and Semiconductor Manufacturing

Faceted Search

689 full-text articles. Page 1 of 28.

Dc-Dc Converter For Electric Vehicle, Jason Y. Zhou, Nicholas James Mah 2019 California Polytechnic State University, San Luis Obispo

Dc-Dc Converter For Electric Vehicle, Jason Y. Zhou, Nicholas James Mah

Electrical Engineering

In this work, a DC-DC converter is designed for an electric vehicle. The DC-DC converter is designed to provide 500W with a 200-400V input and a 12-15V adjustable output. Electric vehicle sales are beginning to increase in popularity and the need for DC-DC converters to siphon power from the tractive system is not yet fully satisfied, especially for single-seater class vehicles. Additionally, improving performance in efficiency without sacrificing wide input voltage range can benefit future DC-DC converter designs. In the end, a forward active clamp DC-DC converter is designed and tested. Additionally, spreadsheet calculators, LTSpice simulations, and Matlab scripts were ...


Design Of Dc-Link Vscf Ac Electrical Power System For The Embraer 190/195 Aircraft, Eduardo Francis Carvalho Freitas, Nihad E. Daidzic 2019 ETEP – Faculdade de Tecnologia de São José dos Campos, Brazil

Design Of Dc-Link Vscf Ac Electrical Power System For The Embraer 190/195 Aircraft, Eduardo Francis Carvalho Freitas, Nihad E. Daidzic

Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

A proposed novel DC-Link VSCF AC-DC-AC electrical power system converter for Embraer 190/195 transport category airplane is presented. The proposed converter could replace the existing conventional system based on the CSCF IDGs. Several contemporary production airplanes already have VSCF as a major or backup source of electrical power. Problems existed with the older VSCF systems in the past; however, the switched power electronics and digital controllers have matured and can be now, in our opinion, safely integrated and replace existing constant-speed hydraulic transmissions powering CSCF AC generators. IGBT power transistors for medium-level power conversion and relatively fast efficient switching ...


Characterization Of High Temperature Optocoupler For Power Electronic Systems, David Gonzalez 2019 University of Arkansas, Fayetteville

Characterization Of High Temperature Optocoupler For Power Electronic Systems, David Gonzalez

Electrical Engineering Undergraduate Honors Theses

High-temperature devices have been rapidly increas due to the implementation of new technologies like silicon carbide, high-temperature ceramic, and others. Functionality under elevated temperatures can reduce signal integrity reducing the reliability of power electronic systems. This study presents an ongoing research effort to develop a high-temperature package for optocouplers to operate at higher temperature compared with commercial devices. Low temperature co-fired ceramic (LTCC) was used as the substrate. Bare die commercial LED and photodetectors were attached to the substrate and tested for functionality. Preliminary results show enhanced performance at elevated temperatures compared to a commercial optocoupler device.


Prototyping A Capacitive Sensing Device For Gesture Recognition, Chenglong Lin 2019 University of Arkansas, Fayetteville

Prototyping A Capacitive Sensing Device For Gesture Recognition, Chenglong Lin

Computer Science and Computer Engineering Undergraduate Honors Theses

Capacitive sensing is a technology that can detect proximity and touch. It can also be utilized to measure position and acceleration of gesture motions. This technology has many applications, such as replacing mechanical buttons in a gaming device interface, detecting respiration rate without direct contact with the skin, and providing gesture sensing capability for rehabilitation devices. In this thesis, an approach to prototype a capacitive gesture sensing device using the Eagle PCB design software is demonstrated. In addition, this paper tested and evaluated the resulting prototype device, validating the effectiveness of the approach.


Synchrophasor-Based Fault Location Detection And Classification, In Power Systems, Using Artificial Intelligence, Hemal Falak 2019 University of Arkansas, Fayetteville

Synchrophasor-Based Fault Location Detection And Classification, In Power Systems, Using Artificial Intelligence, Hemal Falak

Theses and Dissertations

With the introduction of sophisticated electronic gadgets which cannot sustain interruption in the provision of electricity, the need to supply uninterrupted and reliable power supply, to the consumers, has become a crucial factor in the present-day world. Therefore, it is customary to correctly identify fault locations in an electrical power network, in order to rectify faults and restore power supply in the minimum possible time. Many automated fault location detection algorithms have been proposed, however, prior art requires topological and physical information of the electrical power network. This thesis presents a new method of detecting fault locations, in transmission as ...


A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles 2019 University of Arkansas, Fayetteville

A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles

Theses and Dissertations

This thesis presents the design, simulation and test results of a silicon germanium (SiGe) complementary metal-oxide-semiconductor (CMOS) linear regulator. The objective of the circuit is to power other analog devices regardless of the load current and input voltage changes. The application of this regulator is to be part of a project developing a miniaturized semiconductor platform that can be inserted into stems of crops in order to measure data inside the plant and then send it wirelessly to the user. The linear regulator was designed on a BiCMOS SiGe 0.13µm which is a GlobalFoundries process. It has been tested ...


Model Development And Assessment Of The Gate Network In A High-Performance Sic Power Module, William Austin Curbow 2019 University of Arkansas, Fayetteville

Model Development And Assessment Of The Gate Network In A High-Performance Sic Power Module, William Austin Curbow

Theses and Dissertations

The main objective of this effort is to determine points of weakness in the gate network of a high-performance SiC power module and to offer remedies to these issues to increase the overall performance, robustness, and reliability of the technology. In order to accomplish this goal, a highly accurate model of the gate network is developed through three methods of parameter extraction: calculation, simulation, and measurement. A SPICE model of the gate network is developed to analyze four electrical issues in a high-speed, SiC-based power module including the necessary internal gate resistance for damping under-voltage and over-voltage transients, the disparity ...


Investigation Of Critical Technologies Of Chemical Vapor Deposition For Advanced (Si)Gesn Materials, Joshua Matthew Grant 2019 University of Arkansas, Fayetteville

Investigation Of Critical Technologies Of Chemical Vapor Deposition For Advanced (Si)Gesn Materials, Joshua Matthew Grant

Theses and Dissertations

The development of new materials for efficient optoelectronic devices from Group IV elements is the heart of Group IV photonics. This has direct ties to modern technology as the foundation for the electronics industry is silicon. This has driven the development of silicon-based optoelectronics using these other Group IV materials as silicon is a poor optical material due to its indirect band gap when compared to the III-V semiconductors that are used by most of the optoelectronics industry. While efforts have been made to integrate III-V materials onto silicon substrates, the incompatibility with the complementary metal oxide semiconductor process has ...


Wearable Bluetooth Sensors For Capturing Relational Variables And Temporal Variability In Relationships: A Construct Validation Study, James G. Matusik, Ralph Heidl, John R. Hollenbeck, Andrew Yu, Hun W. Lee, Michael D. Howe 2019 Michigan State University

Wearable Bluetooth Sensors For Capturing Relational Variables And Temporal Variability In Relationships: A Construct Validation Study, James G. Matusik, Ralph Heidl, John R. Hollenbeck, Andrew Yu, Hun W. Lee, Michael D. Howe

Michael Howe

The advent of wearable sensor technologies has the potential to transform organizational research by offering the unprecedented opportunity to collect continuous, objective, highly granular data over extended time periods. Recent evidence has demonstrated the potential utility of Bluetooth-enabled sensors, specifically, in identifying emergent networks via colocation signals in highly controlled contexts with known distances and groups. Although there is proof of concept that wearable Bluetooth sensors may be able to contribute to organizational research in highly controlled contexts, to date there has been no explicit psychometric construct validation effort dedicated to these sensors in field settings. Thus, the two studies ...


Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson 2019 Singh Center for Nanotechnology

Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson

Protocols and Reports

Two reactive ion etching (RIE) processes were studied to show the relative etch selectivity between SiO2 and Si using two fluorocarbon gases, CF4 and CHF3. Results show that CHF3 gives better selectivity (16:1) over CF4 (1.2 :1). On the other hand, the etch rate of SiO2 of CF4 is approximately 52.8 nm/min, faster than CHF3 (32.4 nm/min).


Experimental Study And Modeling Of The Gm-I Dependence Of Long-Channel Mosfets, Michael Fong Cheng 2019 California Polytechnic State University, San Luis Obispo

Experimental Study And Modeling Of The Gm-I Dependence Of Long-Channel Mosfets, Michael Fong Cheng

Master's Theses and Project Reports

This thesis describes an experimental study and modeling of the current-transconductance dependence of the ALD1106, ALD1107, and CD4007 arrays. The study tests the hypothesis that the I-gm dependence of these 7.8 µm to 10 µm MOSFETs conforms to the Advanced Compact Model (ACM). Results from performed measurements, however, do not support this expectation. Despite the relatively large length, both ALD1106 and ALD1107 show sufficiently pronounced ‘short-channel’ effects to render the ACM inadequate. As a byproduct of this effort, we confirmed the modified ACM equation. With an m factor of approximately 0.6, it captures the I-gm dependence with sub-28 ...


Wearable Bluetooth Sensors For Capturing Relational Variables And Temporal Variability In Relationships: A Construct Validation Study, James G. Matusik, Ralph Heidl, John R. Hollenbeck, Andrew Yu, Hun W. Lee, Michael D. Howe 2019 Michigan State University

Wearable Bluetooth Sensors For Capturing Relational Variables And Temporal Variability In Relationships: A Construct Validation Study, James G. Matusik, Ralph Heidl, John R. Hollenbeck, Andrew Yu, Hun W. Lee, Michael D. Howe

Management Publications

The advent of wearable sensor technologies has the potential to transform organizational research by offering the unprecedented opportunity to collect continuous, objective, highly granular data over extended time periods. Recent evidence has demonstrated the potential utility of Bluetooth-enabled sensors, specifically, in identifying emergent networks via colocation signals in highly controlled contexts with known distances and groups. Although there is proof of concept that wearable Bluetooth sensors may be able to contribute to organizational research in highly controlled contexts, to date there has been no explicit psychometric construct validation effort dedicated to these sensors in field settings. Thus, the two studies ...


Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert 2019 University of Nebraska - Lincoln

Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert

Christian Binek Publications

Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K ...


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills 2019 The University of Akron

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the ...


S.A.V.E. M.E., Taylor Davis, Kelly Nicole O'Neill, Adrianna M. Dunlap, Parsa Esshaghi Bayat 2019 The University of Akron

S.A.V.E. M.E., Taylor Davis, Kelly Nicole O'Neill, Adrianna M. Dunlap, Parsa Esshaghi Bayat

Williams Honors College, Honors Research Projects

S.A.V.E. M.E. stands for Submerged Automated Vehicular Elevation Minor Extraction or alternatively a Home Swimming Pool Rescue Device. The objective of this project is to design and prototype a system that will make unattended swimming pools through detecting a victim’s presence, deploying a means to save the victim, and alerting others nearby of the situation. This system encompasses sensors and devices within the pool and an alarm system outside of the pool. Upon detection of a sufficiently sized object entering the pool when the system is armed, a device will maneuver to the victim and ...


Fabrication And Characterization Of Planar-Structure Perovskite Solar Cells, Guoduan Liu 2019 University of Kentucky

Fabrication And Characterization Of Planar-Structure Perovskite Solar Cells, Guoduan Liu

Theses and Dissertations--Electrical and Computer Engineering

Currently organic-inorganic hybrid perovskite solar cells (PSCs) is one kind of promising photovoltaic technology due to low production cost, easy fabrication method and high power conversion efficiency.

Charge transport layers are found to be critical for device performance and stability. A traditional electron transport layer (ETL), such as TiO2 (Titanium dioxide), is not very efficient for charge extraction at the interface. Compared with TiO2, SnO2 (Tin (IV) Oxide) possesses several advantages such as higher mobility and better energy level alignment. In addition, PSCs with planar structure can be processed at lower temperature compared to PSCs with other ...


Aptamer Functionalized Zinc Oxide Field Effect Transistors For Odor Detection, Michael D. Aldridge 2019 West Virginia University

Aptamer Functionalized Zinc Oxide Field Effect Transistors For Odor Detection, Michael D. Aldridge

Graduate Theses, Dissertations, and Problem Reports

Odor detection and identification are complex processes, and tasks that currently only animals do well. There is a pressing need for an electronic nose, or eNose, with good sensitivity, selectivity, and speed that mimics that ability. Food quality control operations, environmental sensing, occupational safety, and the defense sectors all require systems that can rapidly and reliably detect trace levels of volatile organic compounds. The goal of this work is to create a biologically inspired device which can accurately detect and identify odors at concentrations consistent with the most sensitive biological systems.

In order to mimic a natural olfactory system, we ...


Csar 62 Spin Curve, Mohsen Azadi, Georgia Griggs, Glen de Villafranca, Gerald Lopez 2018 Singh Center for Nanotechnology

Csar 62 Spin Curve, Mohsen Azadi, Georgia Griggs, Glen De Villafranca, Gerald Lopez

Protocols and Reports

No abstract provided.


Investigation Of A Gan-Based Power Supply Topology Utilizing Solid State Transformer For Low Power Applications, Akrem Mohamed Elrajoubi 2018 University of Arkansas, Fayetteville

Investigation Of A Gan-Based Power Supply Topology Utilizing Solid State Transformer For Low Power Applications, Akrem Mohamed Elrajoubi

Theses and Dissertations

Gallium nitride (GaN) power devices exhibit a much lower gate capacitance for a similar on-resistance than its silicon counterparts, making it highly desirable for high-frequency operation in switching converters, which leads to their significant benefits on power density, cost, and system volume. High-density switching converters are being realized with GaN power devices due to their high switching speeds that reduce the size of energy-storage circuit components. The purpose of this dissertation research is to investigate a new isolated GaN AC/DC switching converter based on solid-state transformer configuration with a totem-pole power factor corrector (PFC) front-end, a half-bridge series-resonant converter ...


Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li 2018 University of Arkansas, Fayetteville

Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li

Theses and Dissertations

Fully realizing the potential of InGaN semiconductors requires high quality materials with arbitrary In-content. To this date the growth of In-rich InGaN films is still challenging since it suffers from the low growth temperatures and many detrimental alloying problems. InN/GaN multiple quantum wells (MQWs) and super lattices (SLs) are expected to be promising alternatives to random InGaN alloys since in principle they can achieve the equivalent band gap of InGaN random alloys with arbitrarily high In-content and at the same time bypass many growth difficulties.

This dissertation focuses on studying the growth mechanisms, structural properties and energy structures of ...


Digital Commons powered by bepress