Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,505 Full-Text Articles 3,604 Authors 450,069 Downloads 105 Institutions

All Articles in Engineering Physics

Faceted Search

1,505 full-text articles. Page 5 of 59.

Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl 2020 California Polytechnic State University, San Luis Obispo

Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl

Physics

To improve particle interaction in the future Electron-Ion Collider (EIC), we investigated different feedback implementations to control the accelerating voltage and examined the power and beam phase for each instance. Using MATLAB, we studied three feedback mechanisms: Direct, One Turn, and Feedforward. Enacting feedforward yielded the best performance. To minimize the klystron power consumption, we analyzed different Low-Level Radio Frequency (LLRF) parameters such as detuning. Combining theory and simulated results, we found the optimal detuning value that minimizes klystron power consumption.


Enhanced Brdf Modeling Using Directional Volume Scatter Terms, Michael W. Bishop 2020 Air Force Institute of Technology

Enhanced Brdf Modeling Using Directional Volume Scatter Terms, Michael W. Bishop

Theses and Dissertations

Accurate Bidirectional Reflectance Distribution Function (BRDF) models provide critical scatter behavior for computer graphics and remote sensing performance. The popular microfacet class of BRDF models is geometric-based and computationally inexpensive compared to wave-optics models. Microfacet models commonly account for surface scatter and Lambertian volume scatter, but not directional volume scatter. This work proposes directional volume scatter modeling for enhanced performance over all observation regions. Five directional volume models are incorporated into the modified Cook-Torrance microfacet model. Additionally, a semi-empirical directional volume term is presented based on the Beckmann microfacet distribution and a modified Fresnel reflection term. High fidelity, low density ...


Evolution Of Two-Step Magnetic Transition On Nanogranular Gd5si1.3ge2.7 Thin Film, J. H. Belo, A. L. Pires, I. T. Gomes, J. B. Sousa, R. L. Hadimani, David C. Jiles, A. M. Pereira, J. P. Araújo 2020 Universidade do Porto

Evolution Of Two-Step Magnetic Transition On Nanogranular Gd5si1.3ge2.7 Thin Film, J. H. Belo, A. L. Pires, I. T. Gomes, J. B. Sousa, R. L. Hadimani, David C. Jiles, A. M. Pereira, J. P. Araújo

Electrical and Computer Engineering Publications

A multi-functional Gd5Si1.3Ge2.7 thin film deposited by pulsed laser ablation in the form of an ensemble of nanoparticles was studied for 18 thermal cycles via electron transport measurements together with structural and magnetic characterization. A general negative thermal dependency of the resistivity (ρ) is observed, which contrasts with the metallic-like behavior observed in bulk Gd5SixGe4-x compounds. This general trend is interrupted by a two-step, positive-slope transition in ρ(T) throughout the [150,250]K interval, corresponding to two consecutive magnetic transitions: a fully coupled magnetostructural followed by a purely magnetic order on heating. An avalanche-like behavior is unveiled ...


Measurements Of Elastoresistance Under Pressure By Combining In-Situ Tunable Quasi-Uniaxial Stress With Hydrostatic Pressure, Elena Gati, Li Xiang, Sergey L. Bud’ko, Paul C. Canfield 2020 Iowa State University and Ames Laboratory

Measurements Of Elastoresistance Under Pressure By Combining In-Situ Tunable Quasi-Uniaxial Stress With Hydrostatic Pressure, Elena Gati, Li Xiang, Sergey L. Bud’Ko, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

Uniaxial stress, as well as hydrostatic pressure are often used to tune material properties in condensed matter physics. Here, we present a setup that allows for the study of the combined effects of quasi-uniaxial stress and hydrostatic pressure. Following earlier designs for measurements under finite stress at ambient pressures [e.g., Chu et al., Science 337, 710 (2012)], the present setup utilizes a piezoelectric actuator to change stress in situ inside the piston–cylinder pressure cell. We show that the actuator can be operated over the full temperature (from 30 K up to 260 K) and pressure range (up to ...


Defect Interaction And Deformation In Graphene, Wei Zhang, Minsung Wang, Rong Cheng, Wen-Cai Lu, Hong-Xing Zhang, Kai-Ming Ho, Cai-Zhuang Wang 2020 Iowa State University and Ames Laboratory

Defect Interaction And Deformation In Graphene, Wei Zhang, Minsung Wang, Rong Cheng, Wen-Cai Lu, Hong-Xing Zhang, Kai-Ming Ho, Cai-Zhuang Wang

Ames Laboratory Accepted Manuscripts

Interactions between defects in graphene and the lattice distortion and electronic charge localization induced by the defect interactions are studied by tight-binding (TB) calculations using the recently developed three-center TB potential model. The interaction between two 5–7 Stone–Wales defects gliding along the zig-zag (ZZ) direction of graphene, which has been observed by experiment, is studied at first to validate the TB calculations. Reconstructed divacancy defect pairs and di-adatom defect pairs separated along the glide ZZ and armchair (AC) directions in graphene, respectively, are then studied. We show that the characteristics (i.e., attractive or repulsive) and the strength ...


Pair-A-Dice Lost: Experiments In Dice Control, Robert H. Scott III, Donald R. Smith 2020 Monmouth University

Pair-A-Dice Lost: Experiments In Dice Control, Robert H. Scott Iii, Donald R. Smith

UNLV Gaming Research & Review Journal

This paper presents our findings from experiments designed to test whether we could use a custom-made dice throwing machine applying common dice control methods to produce dice rolls that differ from random. In earlier research we calculated the percentages of control a craps player needs to break even or beat the house (Smith and Scott, 2018). Using the most common practices of dice control in craps, we established how dice should be configured (i.e., set) and thrown to achieve certain outcomes such as not rolling a seven in the point cycle. We decided to run experiments to see if ...


Dark-State-Based Low-Loss Metasurfaces With Simultaneous Electric And Magnetic Resonant Response, Aditya Jain, Anthony R. James, John Nogan, Ting S. Luk, Ganapathi Subramania, Sheng Liu, Igal Brener, Nian-Hai Shen, Thomas Koschny, Costas M. Soukoulis 2020 Iowa State University and Ames Laboratory

Dark-State-Based Low-Loss Metasurfaces With Simultaneous Electric And Magnetic Resonant Response, Aditya Jain, Anthony R. James, John Nogan, Ting S. Luk, Ganapathi Subramania, Sheng Liu, Igal Brener, Nian-Hai Shen, Thomas Koschny, Costas M. Soukoulis

Ames Laboratory Accepted Manuscripts

The realization of metamaterials or metasurfaces with simultaneous electric and magnetic response and low loss is generally very challenging at optical frequencies. Traditional approaches using nanoresonators made of noble metals, while suitable for the microwave and terahertz regimes, fail at frequencies above the near-infrared, due to prohibitive high dissipative losses and the breakdown of scaling resulting from the electron mass contribution (kinetic inductance) to the effective reactance of these plasmonic meta-atoms. The alternative route based on Mie resonances of high-index dielectric particles normally leads to structure sizes that tend to break the effective-medium approximation. Here, we propose a subwavelength dark-state-based ...


Agenda, Revised, Shubha Tewari 2020 University of Massachusetts Amherst

Agenda, Revised, Shubha Tewari

Science and Engineering Saturday Seminars

Materials from the seminars. The agenda was revised to include online sessions due to the Covid-19 pandemic.


Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben 2020 University of Nebraska-Lincoln

Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben

Peter Dowben Publications

We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001) having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from ...


Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, JoEllyn McMillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman 2020 University of Nebraska Medical Center

Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman

Faculty Publications from Nebraska Center for Materials and Nanoscience

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention.

Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single photon emission ...


Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li 2020 University of Nebraska - Lincoln

Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li

Faculty Publications from Nebraska Center for Materials and Nanoscience

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software ...


Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer 2020 University of Nebraska - Lincoln

Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer

Faculty Publications from Nebraska Center for Materials and Nanoscience

Magnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order. Here, we use nonequilibrium processing to produce B20-ordered Co1+xSi1−x with a maximum Co solubility of x = 0.043. Above ...


Dual-Axis Solar Tracker, Bryan Kennedy 2020 Central Washington University

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in ...


Ferroelectric Domain Wall Memristor, James P. V. McConville, Haidong Lu, Bo Wang, Yueze Tan, Charlotte Cochard, Michele Conroy, Kalani Moore, Alan Harvey, Ursel Bangert, Long-Qing Chen, Alexei Gruverman, J. M. Gregg 2020 Queen’s University Belfast

Ferroelectric Domain Wall Memristor, James P. V. Mcconville, Haidong Lu, Bo Wang, Yueze Tan, Charlotte Cochard, Michele Conroy, Kalani Moore, Alan Harvey, Ursel Bangert, Long-Qing Chen, Alexei Gruverman, J. M. Gregg

Alexei Gruverman Publications

A domain wall-enabled memristor is created, in thin film lithium niobate capacitors, which shows up to twelve orders of magnitude variation in resistance. Such dramatic changes are caused by the injection of strongly inclined conducting ferroelectric domain walls, which provide conduits for current flow between electrodes. Varying the magnitude of the applied electric-field pulse, used to induce switching, alters the extent to which polarization reversal occurs; this systematically changes the density of the injected conducting domain walls in the ferroelectric layer and hence the resistivity of the capacitor structure as a whole. Hundreds of distinct conductance states can be produced ...


2d Confinement Of Thermal Gradients In Metallic Non-Local Spin Valves, Rachel K. Bennet 2020 University of Denver

2d Confinement Of Thermal Gradients In Metallic Non-Local Spin Valves, Rachel K. Bennet

Electronic Theses and Dissertations

Non-local spin valves (NLSVs) are a valuable tool in the growing field of spintronics due to their unique ability to separate charge current from pure spin current. Their potential applications as read heads for hard-disk drives, as well as use as logic gates and other spin sensors, makes detailed understanding of their behavior under a wide range of operating conditions very important.

In this dissertation, I present results of extreme thermal engineering of the supporting substrate of NLSVs, which has a dramatic impact on the background signal of the device as well as contributions from thermal spin effects such as ...


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves 2020 West Virginia University

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the ...


Investigating New Methods To Develop Perovskite Solar Cells, Amani Hussain Alfaifi 2020 University of Denver

Investigating New Methods To Develop Perovskite Solar Cells, Amani Hussain Alfaifi

Electronic Theses and Dissertations

Discovering the potential of organic-inorganic metal halide perovskites (MHP) as a harvesting material in solar cells has strongly affected the research direction in solar energy. The fascinating optical and electronic properties offered by MHP combined with tremendous effort from scientists around the world have improved the efficiency to about 25% in a decade.

In the first part of the dissertation, we studied the lamination process as a new fabrication method for producing self-encapsulated perovskite solar cells based on laminating half stacks,as opposed to the conventional layer-by-layer method. Our work focused on optimizing the lamination process of complex triple cations ...


Phase Field Theory For Fracture At Large Strains Including Surface Stresses, Hossein Jafarzadeh, Gholam Hossein Farrahi, Valery I. Levitas, Mahdi Javanbakht 2020 Sharif University of Technology

Phase Field Theory For Fracture At Large Strains Including Surface Stresses, Hossein Jafarzadeh, Gholam Hossein Farrahi, Valery I. Levitas, Mahdi Javanbakht

Aerospace Engineering Publications

Phase field theory for fracture is developed at large strains with an emphasis on a correct introduction of surface stresses. This is achieved by multiplying the cohesion and gradient energies by the local ratio of the crack surface areas in the deformed and undeformed configurations and with the gradient energy in terms of the gradient of the order parameter in the reference configuration. This results in an expression for the surface stresses which is consistent with the sharp surface approach. Namely, the structural part of the Cauchy surface stress represents an isotropic biaxial tension, with the magnitude of a force ...


Investigation Of Phonon Polaritons In An Hbn Gan Heterostructure, Catherine G. O'Hearn 2020 West Virginia University

Investigation Of Phonon Polaritons In An Hbn Gan Heterostructure, Catherine G. O'Hearn

Graduate Theses, Dissertations, and Problem Reports

There have been many great advances in the generation and manipulation of optics in the visible and near infrared (IR) range over the past decade. This is largely due to plasmonic enhancement, which has led to new technology in biosensing and molecule detection, solid-state lighting, and solar energy harvesting. The field of plasmonics uses quanta of plasma oscillations, plasmons, formed from the interaction between electromagnetic radiation and free electrons to enhance optical near field magnitudes. However, there is still a large region of the electromagnetic spectrum, covering the mid-infrared (MIR) and terahertz (THz) regions, ranging from 3 μm to 1 ...


Quasiperiodic Ordering In Thick Sn Layer On I-Al-Pd-Mn: A Possible Quasicrystalline Clathrate, Vipin Kumar Singh, Marek Mihalkovic, Marian Krajci, Shuvam Sarkar, Pampa Sadhukhan, M. Maniraj, Abhishek Rai, Katariina Pussi, Deborah L. Schlagel, Thomas A. Lograsso, Ajay Kumar Shukla, Sudipta Roy Barman 2020 UGC-DAE Consortium for Scientific Research

Quasiperiodic Ordering In Thick Sn Layer On I-Al-Pd-Mn: A Possible Quasicrystalline Clathrate, Vipin Kumar Singh, Marek Mihalkovic, Marian Krajci, Shuvam Sarkar, Pampa Sadhukhan, M. Maniraj, Abhishek Rai, Katariina Pussi, Deborah L. Schlagel, Thomas A. Lograsso, Ajay Kumar Shukla, Sudipta Roy Barman

Ames Laboratory Accepted Manuscripts

Realization of an elemental solid-state quasicrystal has remained a distant dream so far in spite of extensive work in this direction for almost two decades. In the present work, we report the discovery of quasiperiodic ordering in a thick layer of elemental Sn grown on icosahedral (i)-Al-Pd-Mn. The scanning tunneling microscopy (STM) images and the low-energy electron diffraction patterns of the Sn layer show specific structural signatures that portray quasiperiodicity but are distinct from the substrate. Photoemission spectroscopy reveals the existence of the pseudogap around the Fermi energy up to the maximal Sn thickness. The structure of the Sn ...


Digital Commons powered by bepress