Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

762 Full-Text Articles 1,741 Authors 125,543 Downloads 67 Institutions

All Articles in Plasma and Beam Physics

Faceted Search

762 full-text articles. Page 1 of 26.

Synthesis Of Cuo/Zno And Mgo/Zno Core/Shell Nanoparticles With Plasma Gets And Study Of Their Structural And Optical Properties, Raghad S. Mohammed, Kadhim A. Aadim, Khalid A. Ahmed 2022 Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq

Synthesis Of Cuo/Zno And Mgo/Zno Core/Shell Nanoparticles With Plasma Gets And Study Of Their Structural And Optical Properties, Raghad S. Mohammed, Kadhim A. Aadim, Khalid A. Ahmed

Karbala International Journal of Modern Science

This paper reports the synthesis of CuO/ZnO and MgO/ZnO core/shell nanoparticles using atmospheric plasma jets. The characterization of the synthesized CuO/ZnO and MgO/ZnO core/shell nanoparticles were confirmed by a series of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and UV–Vis spectroscopy. The XRD analysis confirmed no other peaks related to the secondary phases for CuO, MgO, or ZnO, indicating the purity of these nanoparticles. Additionally, EDX analysis confirmed the formation of high purity CuO/ZnO and MgO/ZnO core/shell nanoparticles. The surface ...


Structural And Spectroscopic Analysis For Silver Bulk And Nanoparticles, Hajir M. Fadhil, Khaleel I. Hassoon, Hyder A. Salih 2022 Department of Applied Science, University of Technology, Baghdad, Iraq.

Structural And Spectroscopic Analysis For Silver Bulk And Nanoparticles, Hajir M. Fadhil, Khaleel I. Hassoon, Hyder A. Salih

Karbala International Journal of Modern Science

In this research work, a pulsed Nd-YْAG laser having a wavelength of 1064 nm and energy (400-700 mJ (has been utilized as a source in an induced breakdown spectroscopy (LIBS) experiment to determine the density of electron and the tem-perature of Ag-plasma. Two forms of silver (as a bulk and as a compressed nano powder) have been used as targets in the LIBSs setup. The aim of the present work is to study the impact of target properties and laser energy on the plasma fea-tures formed by the interaction between a pulsed laser and these two forms of silver ...


Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram 2022 The University of Texas at El Paso

Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram

Open Access Theses & Dissertations

A radiofrequency electrothermal thruster is designed and simulated to create a low ionization energy plasma from a neutral propellant using a radio-frequency power. With an asymmetrical surface area ratio between the grounded and powered electrode, ion-neutral charge exchange collisions occurring within the propellant result in propellant heating. The Electrothermal Plenum Thruster conducts this propellant heating in an annular plenum chamber in attempt to maximize propellant heating. A software called CFD-ACE+ is utilized to demonstrate the effects of an enhanced sheath from the asymmetrical power coupling arrangement. Two sets of simulations are run to understand how input variables affect the plasma ...


Ion Production And Mitigation In Dc High-Voltage Photo-Guns, Joshua T. Yoskowitz 2022 Old Dominion University

Ion Production And Mitigation In Dc High-Voltage Photo-Guns, Joshua T. Yoskowitz

Physics Theses & Dissertations

One of the biggest obstacles to operating a GaAs polarized electron source with a long charge lifetime is the mitigation of ion back-bombardment. Several techniques exist to either clear ions from the accelerator or to mitigate ion damage of the photocathode. Predicting the effectiveness of these techniques requires sophisticated simulation models of electron impact ionization within the photo-gun. In this work, the effectiveness of applying a positive anode bias voltage to mitigate ion damage and increase the charge lifetime of the GaAs photocathode was studied over three run periods at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab ...


Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover 2022 University of Tennessee, Knoxville

Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover

Doctoral Dissertations

A self-consistent phase space distribution is a charged particle beam in which the electric field has a linear dependence on the particle coordinates, and in which the linearity of the electric field is conserved as the beam is transported through arbitrary linear focusing fields. These features could increase the possible beam intensity in a circular accelerator by minimizing/eliminating the space charge tune shift/spread. Additionally, the uniform density of known self-consistent distributions would be ideal for fixed-target applications. Finally, certain self-consistent distributions can be flattened by exploiting the relationships between their phases space coordinates and would therefore be useful ...


Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby 2022 University of Tennessee, Knoxville

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into ...


Foundations Of Plasmas For Medical Applications, T. von Woedtke, Mounir Laroussi, M. Gherardi 2022 Old Dominion University

Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi

Electrical & Computer Engineering Faculty Publications

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids ...


Lattice Optics Optimization For Recirculatory Energy Recovery Linacs With Multi-Objective Optimization, Isurumali Neththikumara, Todd Satogata, Alex Bogacz, Ryan Bodenstein, Arthur Vandenhoeke 2022 Old Dominion University

Lattice Optics Optimization For Recirculatory Energy Recovery Linacs With Multi-Objective Optimization, Isurumali Neththikumara, Todd Satogata, Alex Bogacz, Ryan Bodenstein, Arthur Vandenhoeke

College of Sciences Posters

Beamline optics design for recirculatory linear accelerators requires special attention to suppress beam instabilities arising due to collective effects. The impact of these collective effects becomes more pronounced with the addition of energy recovery (ER) capability. Jefferson Lab’s multi-pass, multi-GeV ER proposal for the CEBAF accelerator, ER@CEBAF, is a 10- pass ER demonstration with low beam current. Tighter control of the beam parameters at lower energies is necessary to avoid beam break-up (BBU) instabilities, even with a small beam current. Optics optimizations require balancing both beta excursions at high-energy passes and overfocusing at low-energy passes. Here, we discuss ...


Whistler Waves: Modeling And Observations, Daniel Williams 2022 Embry-Riddle Aeronautical University

Whistler Waves: Modeling And Observations, Daniel Williams

PhD Dissertations and Master's Theses

The thesis presents the results of all the research from the published and in publication process research in the Journal of Geophysical Research [1]. This research focuses on whistler wave ducting events in the equatorial magnetosphere. High-density ducts are the main focus of whistler study in both studies as they are commonly observed by the Van Allen Probe satellites. A three-step procedure based on the analysis of the whistler wave dispersion relation and numerical simulations of the electron magnetohydrodynamics model. We use this model to identify the parallel and perpendicular wave numbers of the “most trapped” wave in an attempt ...


Mms Observations Of The Kelvin-Helmholtz Instability And Associated Ion Scale Waves, Rachel C. Rice 2022 Embry-Riddle Aeronautical University

Mms Observations Of The Kelvin-Helmholtz Instability And Associated Ion Scale Waves, Rachel C. Rice

PhD Dissertations and Master's Theses

The detailed mechanisms coupling the solar wind to Earth's magnetosphere are not yet fully understood. Solar wind plasma is heated non-adiabatically as it penetrates the magnetosphere, and this process must span scale sizes. Reconnection alone is not able to account for the observed heating; other mechanisms must be at work. One potential process is the Kelvin-Helmholtz instability (KHI). The KHI is a convective instability which operates at the fluid scale in plasmas, but is capable of driving secondary process at smaller scales. Previous work has shown evidence of magnetic reconnection, various ion scale wave modes, mode conversion, and turbulence ...


Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder 2022 University of New Hampshire, Durham

Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder

Honors Theses and Capstones

The solar wind releases a constant stream of ionized particles into space which causes complex behaviors to occur within Earth’s magnetosphere. These disruptions can initiate magnetic reconnection and cause flow reversal of ions in the magnetotail. Two flow reversal events were locally detected by the Magnetospheric Multiscale Mission (MMS) on July 26, 2017 at 0700 UT and 0730 UT. The Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) provide a global measurement of heated signatures of the magnetic field and detected an increase in ion temperature during these reconnection events without the presence of a geomagnetic storm. Active Magnetosphere and Planetary ...


Ion Velocity Distribution Functions In Cutting-Edge Plasmas, Mitchell Cameron Paul 2022 West Virginia University

Ion Velocity Distribution Functions In Cutting-Edge Plasmas, Mitchell Cameron Paul

Graduate Theses, Dissertations, and Problem Reports

Cutting-edge plasma experiments continue to push the frontiers of plasma science. Two such groups of experiments, helicon sources and laboratory magnetic reconnection, are the focus of this thesis. The relatively high plasma density achieved for modest input powers makes helicon source plasmas ideal testbeds for fusion-relevant phenomena without the complexities associated with fusion devices. Examples include plasma-material interaction (PMI) studies, divertor region studies, and boundary physics studies. As advancements in helicon source design and technology make operation at higher power for longer times possible, understanding of the plasma dynamics, particularly ion dynamics, is vital.

Laboratory experiments are essential to advancing ...


A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić 2022 Old Dominion University

A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić

Physics Faculty Publications

Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard ...


Plasma-Laser Wakefield Acceleration, Jonathan Babu 2021 California Polytechnic State University, San Luis Obispo

Plasma-Laser Wakefield Acceleration, Jonathan Babu

Physics

Many texts detailing the derivations and science of Wakefield Acceleration are aimed at graduate and doctorate level scholars, and these may seem intimidating to new physics students. This paper is meant to be an introduction to the nature of plasmas, lasers, laser-plasma interactions, and Laser Wakefield Acceleration (LWFA), with sources given where extra detail may be required. I recognize that this paper is not meant to be an all-encompassing review on the nature of the topics, as these topics are complex and subject of entire textbooks. Instead, I aim to provide an introduction to these topics to a college-level scholar ...


Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde IV 2021 Air Force Institute of Technology

Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv

Faculty Publications

We present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotemporal (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by developing the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by deriving an expression for the mean intensity at any plane z ≥ 0. To validate the ...


Ultra-Low Frequency Waves At Middle Latitudes During Substorms: Observations And Modeling, Mergen Alimaganbetov 2021 Embry-Riddle Aeronautical University

Ultra-Low Frequency Waves At Middle Latitudes During Substorms: Observations And Modeling, Mergen Alimaganbetov

PhD Dissertations and Master's Theses

This doctoral dissertation presents the results of investigation of the Ultra-Low Frequency (ULF) waves at middle latitudes during substorms. The dissertation consists of two major parts, observations and simulations. The research in this dissertation proposes that the main role in the generation of ULF waves at middle latitudes during substorm belongs to the plasmapause.

The first part of the dissertation presents results of the data analysis of 84 intense substorm events as well as an overview of space observation programs such as CRRES, Van Allen Probes and DMSP. Data used in this study are from the ACE satellite taken measurements ...


Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver 2021 Air Force Institute of Technology

Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver

Theses and Dissertations

This dissertation covers nanosecond pulsed laser ablation of graphite for 4-5.7 J/cm2 fluences with 248 nm and 532 nm lasers in 1-180 Torr helium, argon, nitrogen, air, and mixed gas. Three experiments were performed to improve the interpretation of common diagnostics used to characterize pulsed laser ablation, find simple but universal scaling relationships for comparing dynamics across different materials and ablation conditions, and provide a systematic analysis of graphite emissive plume and shock wave dynamics. A scaling of the Sedov-Taylor energy ratio was developed and validated for a range of studies despite differences in wavelength, pulse duration ...


Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde IV 2021 University of Miami

Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv

Faculty Publications

A generalization of the classic Gaussian random variable to the family of multi-Gaussian (MG) random variables characterized by shape parameter M > 0, in addition to the mean and the standard deviation, is introduced. The probability density function (PDF) of the MG family members is an alternating series of Gaussian functions with suitably chosen heights and widths. In particular, for integer values of M, the series has a finite number of terms and leads to flattened profiles, while reducing to the classic Gaussian PDF for M = 1. For non-integer, positive values of M, a convergent infinite series of Gaussian functions is ...


A Study Of Systematic Uncertainties For A Photon-Like Low Energy Excess Search At Microboone, Gray Yarbrough 2021 University of Tennessee, Knoxville

A Study Of Systematic Uncertainties For A Photon-Like Low Energy Excess Search At Microboone, Gray Yarbrough

Doctoral Dissertations

The premise of this dissertation is the study of and reduction of systematic uncertainties in the MicroBooNE experiment at the Fermi National Accelerator Laboratory. MicroBooNE is a short-baseline oscillation experiment using the innovative liquid argon time projection chamber technology to study, with unprecedented detail, neutrino interactions. The primary goal of MicroBooNE is the investigation of the MiniBooNE low energy excess (LEE) of electron neutrino events, a result which raised fundamental questions on the existence of sterile neutrinos with broad implications to the field of particle physics. The principal study of this dissertation is a study of systematics as part of ...


Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini 2021 University of Tennessee, Knoxville

Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini

Doctoral Dissertations

A collector probe in its simplest form is a rod inserted into a plasma so that impurities are deposited onto it. These probes are then removed and analyzed to determine the deposition profile both along the length of probe and across the width of it. This dissertation covers a series of collector probes experiments and accompanying interpretive modelling all with the main goal of providing evidence for long-hypothesized near scrape-off layer (SOL) accumulation of impurities that can lead to efficient core contamination. The structure of this dissertation is as follows. A brief outline of fusion energy and why we need ...


Digital Commons powered by bepress