Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,563 Full-Text Articles 3,600 Authors 543,325 Downloads 122 Institutions

All Articles in Engineering Physics

Faceted Search

1,563 full-text articles. Page 3 of 67.

Development Of Spintronic Materials By Stoichiometric Engineering Of Cofeval, Gavin Baker, Matthew Wieberdink, Jax Wysong 2023 South Dakota State University

Development Of Spintronic Materials By Stoichiometric Engineering Of Cofeval, Gavin Baker, Matthew Wieberdink, Jax Wysong

The Journal of Undergraduate Research

We have carried out an experimental investigation of the Heusler Alloy CoFeVAl and its two variants Co1.5Fe0.5VAl and CoFeVAl0.5Si0.5 for their potential application in the field of spintronics. Heusler alloys are investigated for their many remarkable properties, including half-metallicity and spin-gapless semi-conductivity. Spintronic technology utilizes the intrinsic spin of an electron for information storage and manipulation in solid state devices. We synthesized these alloys using arc-melting and annealing. All three alloys were found to have cubic crystal structures with varying disorders. The parent alloy CoFeVAl shows a magnetic transition at 65 K. However, …


Structural And Magnetic Properties Of Heusler Alloys: Fecrmn1-Xvxal (X = 0, 0.5, 0.75), Jax Wysong, Gavin Baker 2023 South Dakota State University

Structural And Magnetic Properties Of Heusler Alloys: Fecrmn1-Xvxal (X = 0, 0.5, 0.75), Jax Wysong, Gavin Baker

The Journal of Undergraduate Research

Heusler alloys are important to investigate due to their multiple interesting properties including half-metallicity and spin-gapless semi conductivity. Materials exhibiting these properties are desired for spin-transport-based devices. These devices provide the storing and delivering of information through the utilization of the spin property of electrons. The magnetic and electronic band properties of these alloys can be modified by tuning the elemental composition. This work investigates structural and magnetic properties of the three Heusler alloys FeCrMnAl, FeCrMn0.5V0.5Al, and FeCrMn0.25V0.75Al. It was found that all three alloys crystallize in cubic crystal structure with an …


Mechanisms Of Emulsion Destabilization: An Investigation Of Surfactant, Stabilizer, And Detergent Based Formulations Using Diffusing Wave Spectroscopy, JORDAN N. NOWACZYK 2023 Virginia Commonwealth University

Mechanisms Of Emulsion Destabilization: An Investigation Of Surfactant, Stabilizer, And Detergent Based Formulations Using Diffusing Wave Spectroscopy, Jordan N. Nowaczyk

Theses and Dissertations

Conventional approaches for studying emulsions, such as microscopy and macroscopic phase tracking, present challenges when it comes to establishing detailed mechanistic descriptions of the impact of emulsifier and stabilizer additives. Additionally, while a combination of sizing methods and macroscopic phase tracking can provide insights into droplet size changes and concentration, the use of multiple measurements can be cumbersome and error-prone. It is the focus of this work, to present a new method for studying water in oil (W/O) emulsions that involves using diffusing wave spectroscopy (DWS) to examine the impact of three different surface stabilizing additives at varying concentrations. By …


Quantum Efficiency And Lifetime Study For Negative Electron Affinity Gaas Nanopillar Array Photocathode, Md Aziz Ar Rahman, Md Abdullah Mamun, Shukui Zhang, Hani E. Elsayed-Ali 2023 Old Dominion University

Quantum Efficiency And Lifetime Study For Negative Electron Affinity Gaas Nanopillar Array Photocathode, Md Aziz Ar Rahman, Md Abdullah Mamun, Shukui Zhang, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Recent studies showed significant improvement in quantum efficiency (QE) by negative electron affinity (NEA) GaAs nanopillar array (NPA) photocathodes over their flat surface peers, particularly at 500 ─ 800 nm waveband. However, the underlying physics is yet to be well understood for further improvement in its performance. In this report, NEA GaAs NPA photocathodes with different dimensions were studied. The diameter of the nanopillars varied from 200 ─ 360 nm, the height varied from 230 ─ 1000 nm and the periodicity varied from 470 ─ 630 nm. The QE and photocathode lifetime were measured. Mie-resonance enhancement was observed at tunable …


The Computational Model Of Nanofluid Considering Heat Transfer And Entropy Generation Across A Curved And Fat Surface, Sayer Obaid Alharbi, Florentin Smarandache, Awatif M.A. Elsiddieg, Aisha M. Alqahtani, M. Riaz Khan, V. Puneeth, Nidhal Becheikh 2023 University of New Mexico

The Computational Model Of Nanofluid Considering Heat Transfer And Entropy Generation Across A Curved And Fat Surface, Sayer Obaid Alharbi, Florentin Smarandache, Awatif M.A. Elsiddieg, Aisha M. Alqahtani, M. Riaz Khan, V. Puneeth, Nidhal Becheikh

Branch Mathematics and Statistics Faculty and Staff Publications

The entropy generation analysis for the nanofluid flowing over a stretching/shrinking curved region is performed in the existence of the cross-diffusion effect. The surface is also subjected to second-order velocity slip under the effect of mixed convection. The Joule heating that contributes significantly to the heat transfer properties of nanofluid is incorporated along with the heat source/sink. Furthermore, the flow is assumed to be governed by an exterior magnetic field that aids in gaining control over the flow speed. With these frameworks, the mathematical model that describes the flow with such characteristics and assumptions is framed using partial differential equations …


From Sine Waves To Soundscapes: Exploring The Art And Science Of Analog Synthesizer Design, Saiqi Zhang 2023 Bard College

From Sine Waves To Soundscapes: Exploring The Art And Science Of Analog Synthesizer Design, Saiqi Zhang

Senior Projects Spring 2023

Senior Project submitted to The Division of Science, Mathematics and Computing of Bard College.


Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan 2023 Missouri State University

Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan

MSU Graduate Theses

The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature composites (UHTC) have been developed through the implementation of deep neural network (DNN) algorithms. These algorithms employed two different approaches and corresponding codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The samples for training and validation sets of the forces, energy, and virial data were obtained from the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) calculations, including the simulation data from the ultra-high temperature region (> 2000K). The study …


Generation And Characterization Of Magnetized Electron Beam From A Dc High Voltage Photogun For Electron Beam Cooling Application, S.A.K. Wijethunga, M. A. Mamun, R. Suleiman, P. Adderley, B. Bullard, J. Benesch, Jean R. Delayen, J. Grames, C. Hernandez-Garcia, F. Hannon, Geoffrey A. Krafft, G. Palacios-Serrano, M. Poelker, M. Stefani, Y. Wang, S. Zhang 2023 Old Dominion University

Generation And Characterization Of Magnetized Electron Beam From A Dc High Voltage Photogun For Electron Beam Cooling Application, S.A.K. Wijethunga, M. A. Mamun, R. Suleiman, P. Adderley, B. Bullard, J. Benesch, Jean R. Delayen, J. Grames, C. Hernandez-Garcia, F. Hannon, Geoffrey A. Krafft, G. Palacios-Serrano, M. Poelker, M. Stefani, Y. Wang, S. Zhang

Physics Faculty Publications

One of the most challenging requirements for the proposed Electron–Ion Collider is the strong cooling of the proton beam, which is key to achieving the collider’s desired luminosity of order 1033–1034cm−2s−1. Magnetized bunched-beam electron cooling could be a means to achieve the required high luminosity, where strong cooling is accomplished inside a cooling solenoid where the ions co-propagate with an electron beam generated from a source immersed in a magnetic field. To increase the cooling efficiency, a bunched electron beam with high bunch charge and high repetition rate is required. This work …


Characterization Of Dissipative Regions Of A N-Doped Superconducting Radio-Frequency Cavity, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria lavarone 2023 Temple University

Characterization Of Dissipative Regions Of A N-Doped Superconducting Radio-Frequency Cavity, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Lavarone

Physics Faculty Publications

We report radio-frequency measurements of quality factors and temperature mapping of a nitrogen doped Nb superconducting RF cavity. Cavity cutouts of hot and cold spots were studied with low temperature scanning tunneling microscopy and spectroscopy, X-ray photoelectron spectroscopy and secondary electron microscopy. Temperature mapping revealed a substantial reduction of the residual resistance upon cooling the cavity with a greater temperature gradient and hysteretic losses at the quench location, pointing to trapped vortices as the dominant source of residual surface resistance.Analysis of the tunneling spectra in the framework of a proximity effect theory shows that hot spots have a reduced pair …


Temperature, Rf Field, And Frequency Dependence Performance Evaluation Of Superconducting Niobium Half-Wave Coaxial Cavity, N. K. Raut, G. Ciovati, S. U. De Silva, J. R. Delayen, P. Dhakal, B. D. Khanal, J. K. Tiskumara 2023 Jefferson Lab

Temperature, Rf Field, And Frequency Dependence Performance Evaluation Of Superconducting Niobium Half-Wave Coaxial Cavity, N. K. Raut, G. Ciovati, S. U. De Silva, J. R. Delayen, P. Dhakal, B. D. Khanal, J. K. Tiskumara

Physics Faculty Publications

Recent advancement in superconducting radio frequency cavity processing techniques, with diffusion of impurities within the RF penetration depth, resulted in high quality factor with increase in quality factor with increasing accelerating gradient. The increase in quality factor is the result of a decrease in the surface resistance as a result of nonmagnetic impurities doping and change in electronic density of states. The fundamental understanding of the dependence of surface resistance on frequency and surface preparation is still an active area of research. Here, we present the result of RF measurements of the TEM modes in a coaxial half-wave niobium cavity …


Crab Cavities For Ilc, P. A. McIntosh, S. A. Belomestnykh, G. Burt, R. Calaga, S. U. De Silva, J. R. Delayen, I. V. Gonin, T. N. Khabiboulline, A. Lunin, T. Okugi, Y. M. Orlov, S. Verdú-Andrés, B. P. Xiao, V. P. Yakovlev, A. Yamamoto 2023 STFC Daresbury Laboratory

Crab Cavities For Ilc, P. A. Mcintosh, S. A. Belomestnykh, G. Burt, R. Calaga, S. U. De Silva, J. R. Delayen, I. V. Gonin, T. N. Khabiboulline, A. Lunin, T. Okugi, Y. M. Orlov, S. Verdú-Andrés, B. P. Xiao, V. P. Yakovlev, A. Yamamoto

Physics Faculty Publications

For the 14 mrad crossing angle proposed, crab cavity systems are fundamentally anticipated for the viable operation of the International Linear Collider (ILC), in order to maximise its luminosity performance. Since 2021, a specialist development team have been defining optimum crab cavity technologies which can fulfil the operational requirements for ILC, both for its baseline centre-of-mass energy of 250 GeV, but also extending those requirements out to higher beam collision intensities. Five design teams have established crab cavity technology solutions, which have the capability to also operate up to 1 TeV centre-of-mass. This presentation showcases the key performance capabilities of …


Scattered Spectra From Inverse Compton Sources Operating At High Laser Fields And High Electron Energies, Geoffrey A. Krafft, Balša Terzić, Erik Johnson, G. Wilson 2023 Old Dominion University

Scattered Spectra From Inverse Compton Sources Operating At High Laser Fields And High Electron Energies, Geoffrey A. Krafft, Balša Terzić, Erik Johnson, G. Wilson

Physics Faculty Publications

As Compton x-ray and gamma-ray sources become more prevalent, to understand their performance in a precise way, it becomes important to be able to compute the distribution of scattered photons precisely. For example, codes have been developed at Old Dominion University which were used to understand the performance of the Dresden Compton Source in detail. An ideal model would (i) include the full Compton effect frequency relations between incident and scattered photons, (ii) allow the field strength to be large enough that nonlinear effects are captured, and (iii) allow the effects of electron beam emittance to be introduced and studied. …


Cavity And Cryomodule Developments For Eic, R. A. Rimmer, E. Daly, J. Guo, J. Henry, J. Matalevich, H. Wang, S. Wang, D. Holmes, K. Smith, W. Xu, A. Zaltsman, B. Xiao, Subashini De Silva, Jean R. Delayen 2023 Old Dominion University

Cavity And Cryomodule Developments For Eic, R. A. Rimmer, E. Daly, J. Guo, J. Henry, J. Matalevich, H. Wang, S. Wang, D. Holmes, K. Smith, W. Xu, A. Zaltsman, B. Xiao, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

The EIC is a major new project under construction at BNL in partnership with JLab. It relies upon a number of new SRF cavities at 197 MHz, 394 MHz, 591 MHz and 1773 MHz to pre-bunch, accelerate, cool and crab the stored beams. R&D is focusing on the 591 MHz elliptical cavity and 197 MHz crab cavity first as these are the most challenging. Preliminary designs of these cavities are presented along with an R&D status report. To avoid developing multiple different cryostats a modular approach is adopted using a high degree of commonality of parts and systems. This approach …


Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd 2023 Brigham Young University

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali 2023 Old Dominion University

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali

Physics Faculty Publications

Nanostructured negative electron affinity GaAs photocathodes for a polarized electron source are studied using finite difference time domain optical simulation. The structures studied are nanosquare columns, truncated nanocones, and truncated nanopyramids. Mie-type resonances in the 700–800 nm waveband, suitable for generation of polarized electrons, are identified. At resonance wavelengths, the nanostructures can absorb up to 99% of the incident light. For nanosquare columns and truncated nanocones, the maximum quantum efficiency (QE) at 780 nm obtained from simulation is 27%, whereas for simulated nanopyramids, the QE is ∼21%. The high photocathode quantum efficiency is due to the shift of Mie resonance …


Development Of A Prototype Superconducting Radio-Frequency Cavity For Conduction Cooled Accelerators, Gianluigi Ciovati, J. Anderson, S. Balachandran, G. Cheng, B. Coritron, E. Daly, P. Dhakal, Alex Gurevich, F. Hannon, K. Harding, L. Holland, F. Marhauser, K. McLaughlin, D. Packard, T. Powers, U. Pudasaini, J. Rathke, R. Rimmer, T. Schultheiss, H. Vennekate, D. Vollmer 2023 Old Dominion University

Development Of A Prototype Superconducting Radio-Frequency Cavity For Conduction Cooled Accelerators, Gianluigi Ciovati, J. Anderson, S. Balachandran, G. Cheng, B. Coritron, E. Daly, P. Dhakal, Alex Gurevich, F. Hannon, K. Harding, L. Holland, F. Marhauser, K. Mclaughlin, D. Packard, T. Powers, U. Pudasaini, J. Rathke, R. Rimmer, T. Schultheiss, H. Vennekate, D. Vollmer

Physics Faculty Publications

The higher efficiency of superconducting radio-frequency (SRF) cavities compared to normal -conducting ones enables the development of high-energy continuous-wave linear accelerators (linacs). Recent progress in the development of high-quality Nb3Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. A possible use of conduction-cooled SRF linacs is for environmental applications, requiring electron beams with energy of 1-10 MeV and 1 MW of power. We have designed a 915 MHz SRF linac for such …


Surface Properties And Rf Performance Of Vapor Diffused Nb₃Sn On Nb After Sequential Anneals Below 1000 °C, Jayendrika K. Tiskumara, Jean R. Delayen, U. Pudasaini, G. Eremeev 2023 Old Dominion University

Surface Properties And Rf Performance Of Vapor Diffused Nb₃Sn On Nb After Sequential Anneals Below 1000 °C, Jayendrika K. Tiskumara, Jean R. Delayen, U. Pudasaini, G. Eremeev

Physics Faculty Publications

Nb₃Sn is a next-generation superconducting material that can be used for future superconducting radiofrequency (SRF) accelerator cavities, promising better performance, cost reduction, and higher operating temperature than Nb. The Sn vapor diffusion method is currently the most preferred and successful technique to coat niobium cavities with Nb₃Sn. Among post-coating treatments to optimize the coating quality, higher temperature annealing without Sn is known to degrade Nb₃Sn because of Sn loss. We have investigated Nb₃Sn/Nb samples briefly annealed at 800-1000 °C, for 10 and 20 minutes to potentially improve the surface to enhance the performance of Nb₃Sn-coated cavities. Following the sample studies, …


Investigation Of The Multilayer Shielding Effect Through Nbtin-Ain Coated Bulk Niobium, Iresha Harshani Senevirathne, D. R. Beverstock, A-M Valente-Feliciano, Alex Gurevich, Jean R. Delayen 2023 Old Dominion University

Investigation Of The Multilayer Shielding Effect Through Nbtin-Ain Coated Bulk Niobium, Iresha Harshani Senevirathne, D. R. Beverstock, A-M Valente-Feliciano, Alex Gurevich, Jean R. Delayen

Physics Faculty Publications

We report measurements of the dc field onset Bp of magnetic flux penetration through NbTiN-AlN coating on bulk niobium using the Hall probe experimental setup. The measurements of Bp reveal the multilayer shielding effect on bulk niobium under high magnetic fields at cryogenic temperatures. We observed a significant enhancement in Bp for the NbTiN-AlN coated Nb samples as compared to bare Nb samples. The observed dependence of Bp on the coating thickness is consistent with theoretical predictions.


Magnetic Field Mapping Of A Large-Grain 1.3 Ghz Single-Cell Cavity, Ishwari Prasad Parajuli, Jean R. Delayen, Alex V. Gurevich, Gianluigi Ciovati 2023 Old Dominion University

Magnetic Field Mapping Of A Large-Grain 1.3 Ghz Single-Cell Cavity, Ishwari Prasad Parajuli, Jean R. Delayen, Alex V. Gurevich, Gianluigi Ciovati

Physics Faculty Publications

A new magnetic field mapping system for 1.3 GHz single-cell cavities was developed in order to reveal the impact of ambient magnetic field and temperature gradients during cool-down on the flux trapping phenomenon. Measurements were done at 2 K for different cool-down conditions of a large-grain cavity before and after 120 °C bake. The fraction of applied magnetic field trapped in the cavity walls was ~ 50% after slow cool-down and ~ 20% after fast cool-down. The results showed a weak correlation between between trapped flux locations and hot-spots causing the high-field Q-slope. The results also showed an increase of …


Development And Performance Of Rfd Crab Cavity Prototypes For Hl-Lhc Aup, L. Listori, P. Berrutti, M. Narduzzi, A. Castilla, S. U. De Silva, J. R. Delayen, N. A. Huque, Z. Li, A. Ratti 2023 Fermilab

Development And Performance Of Rfd Crab Cavity Prototypes For Hl-Lhc Aup, L. Listori, P. Berrutti, M. Narduzzi, A. Castilla, S. U. De Silva, J. R. Delayen, N. A. Huque, Z. Li, A. Ratti

Physics Faculty Publications

The US will be contributing to the HL-LHC upgrade at CERN with the fabrication and qualification of RFD crabbing cavities in the framework of the HL-LHC Accelerator Upgrade Project (AUP) managed by Fermilab. AUP received Critical Decision 3 (CD-3) approval by DOE in December 2020 launching the project into the production phase. The electro-magnetic design of the cavity was inherited from the LHC Accelerator Research Program (LARP) but needed to be revised to meet new project requirements and to prevent issues encountered during beam tests performed at CERN in the R&D phase. Two prototype cavities were manufactured in industry and …


Digital Commons powered by bepress