Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,257 Full-Text Articles 3,750 Authors 600,848 Downloads 108 Institutions

All Articles in Condensed Matter Physics

Faceted Search

2,257 full-text articles. Page 1 of 91.

Methods For Preparing And Characterizing Granular Materials For Electron Yield Measurements, Tom Keaton 2023 Utah State University

Methods For Preparing And Characterizing Granular Materials For Electron Yield Measurements, Tom Keaton

All Graduate Plan B and other Reports

This work presents a systematic study on sample preparation methods and accuracy of electron yield (EY) measurements of highly insulating, granular materials. EY measurements of highly insulating materials, especially those with high EY, are challenging due to the effects of sample charging even for very low fluence electron probe beams. EY measurements of particulates are complicated by: (i) roughness effects from particulate size, shape, coverage, and compactness; (ii) particle adhesion; (iii) substrate contributions; and (iv) electrostatic repulsion and potential barriers from charged particles and substrates. Numerous methods were explored to rigidly affix particles on conducting substrates at varying coverages for …


Self-Limiting Morphologies In Geometrically Frustrated Assemblies, 2023 University of Massachusetts Amherst

Self-Limiting Morphologies In Geometrically Frustrated Assemblies

Doctoral Dissertations

Geometrically frustrated assembly, where locally preferred motifs are incompatible with constraints on global ordering of the assembly, may result in a super-extensive energy penalty to assembly growth and self-limitation of the assembly size. Using theory and simulation, we study how this mechanism may also shape the assembly's boundary and its interior packing, which are distinct morphological changes. In Chapter 1, we provide some background and a theoretical framework for understanding self-limiting behavior due to geometric frustration. Three distinct projects are detailed in the subsequent chapters: original numerical results are presented on competing responses to frustration in helical bundles made of …


Revealing The Three-Dimensional Magnetic Texture With Machine Learning Models, Shihua Zhao 2023 The Graduate Center, City University of New York

Revealing The Three-Dimensional Magnetic Texture With Machine Learning Models, Shihua Zhao

Dissertations, Theses, and Capstone Projects

Revealing three-dimensional (3D) magnetic textures with vector field electron tomography (VFET) is essential in studying novel magnetic materials with topologically protected spin textures potentially being used in the next-generation semiconductor industry. In this dissertation, we use machine learning (ML) models to reconstruct 3D magnetic textures from electron holography (EH) data.

We can feed the EH data, a series of two-dimensional (2D) phasemaps, into a neural network (NN) architecture directly or feed the EH data into a conventional VFET and then feed the reconstructed results into a NN. Thus, perceptive NN, either a simple convolutional neural network (CNN) or Unet architecture, …


Pressure - Temperature Phase Diagram Of Crsite3, J L. Musfeldt, David Mandrus, Zhenxian Liu 2023 University of Tennessee, Knoxville

Pressure - Temperature Phase Diagram Of Crsite3, J L. Musfeldt, David Mandrus, Zhenxian Liu

Chemistry Publications and Other Works

van der Waals solids are well known to host remarkable phase diagrams with competing phases, unusual energy transfer processes, and elusive states of matter. Among this class of materials, chalcogenides have emerged as the most flexible and relevant platforms for unraveling charge-structure-function relationships. In order to explore the properties of complex chalcogenides under external stimuli, we measured the far infrared spectroscopic response of CrSiTe3 under extreme pressure-temperature conditions. Analysis of the 368 cm−1 Si-Te stretching mode and the manner in which it is screened by the closure of the indirect gap reveals that the insulator-metal transition takes place immediately after …


Lesker Pvd75 E-Beam/Thermal Evaporator (Pvd-02) Standard Operating Procedure, David S. Barth, Jason A. Röhr 2023 University of Pennsylvania

Lesker Pvd75 E-Beam/Thermal Evaporator (Pvd-02) Standard Operating Procedure, David S. Barth, Jason A. Röhr

Standard Operating Procedures

Standard Operating Procedure for the Lesker PVD75 E-beam/Thermal Evaporator (PVD-02) located at the Quattrone Nanofabrication Facility within the Singh Center for Nanotechnology at the University of Pennsylvania


Architecture Of Heptagonal Metallo-Macrocycles Via Embedding Metal Nodes Into Its Rigid Backbone, A.M.Shashika D. Wijerathna, He Zhao, Qiangqiang Dong, Qixia Bai, Zhiyuan Jiang, Jie Yuan, Jun Wang, Mingzhao Chen, Markus Zirnheld, Rockwell T. Li, Yuan Zhang, Yiming Li, Pingshan Wang 2023 Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States

Architecture Of Heptagonal Metallo-Macrocycles Via Embedding Metal Nodes Into Its Rigid Backbone, A.M.Shashika D. Wijerathna, He Zhao, Qiangqiang Dong, Qixia Bai, Zhiyuan Jiang, Jie Yuan, Jun Wang, Mingzhao Chen, Markus Zirnheld, Rockwell T. Li, Yuan Zhang, Yiming Li, Pingshan Wang

College of Sciences Posters

Metal-organic macrocycles have received increasing attention not only due to their versatile applications such as molecular recognition, compounds encapsulation, anti-bacteria and others, but also for their important role in the study of structure-property relationship at nano scale. However, most of the constructions utilize benzene ring as the backbone, which restricts the ligand arm angle in the range of 60, 120 and 180 degrees. Thus, the topologies of most metallo-macrocycles are limited as triangles and hexagons, and explorations of using other backbones with large angles and the construction of metallo-macrocycles with more than six edges are very rare.

In this study, …


Structural And Magneto Conductivity Studies Of Nio/Smba2cu3o7-Δ Superconducting Composite, Hadi Basma, Sajida Rmeid, Ramadan Awad, Mohammed Said 2022 Department of Physics, Faculty of Science, Beirut Arab University

Structural And Magneto Conductivity Studies Of Nio/Smba2cu3o7-Δ Superconducting Composite, Hadi Basma, Sajida Rmeid, Ramadan Awad, Mohammed Said

BAU Journal - Science and Technology

In this work, we investigate the effect of NiO nanoparticles' addition on the structure, superconductivity, and magneto conductivity for the SmBa2Cu3O7-δ phase. Composite nano/superconductor of (NiO)x/SmBa2Cu3O7-δ (0.00≤x≤0.12 wt.%) were prepared by conventional solid-state reaction technique and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The orthorhombic structure was maintained whereas the lattice parameters showed unsystematic variations with the NiO nanoparticles addition. The superconducting transition temperature Tc, determined from electrical resistivity measurements, showed an enhancement with x up to 0.04wt.% followed by a reduction …


Characterization Of Losses In Superconducting Radio-Frequency Cavities By Combined Temperature And Magnetic Field Mapping, Ishwari Prasad Parajuli 2022 Old Dominion University

Characterization Of Losses In Superconducting Radio-Frequency Cavities By Combined Temperature And Magnetic Field Mapping, Ishwari Prasad Parajuli

Physics Theses & Dissertations

Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010-1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two novel …


Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen 2022 University of Tennessee, Knoxville

Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen

Doctoral Dissertations

Turbulence is ubiquitous in life —from biology to astrophysics. The best direct numeric simulations (DNS) have only been benchmarked against low resolution, time-averaged experimental configurations—partly because of limitations in computing power. With time, computing power has greatly increased, so there is need for higher quality data of turbulent flow. In this dissertation, we explore a solution that enables quantitative visualization measurement of the velocity field in liquid helium, which has the potential of breaking new ground for high Reynolds number turbulence research and model testing.

Our technique involves creation of clouds of molecular tracers using 3He-neutron absorption reaction in liquid …


Raman Scattering Measurements And Analyses Of Gan Thin Films Grown On Zno Substrates By Metalorganic Chemical Vapor Deposition, Zane McDaniel, Zhe Chuan Feng, Kevin Stokes 2022 Kennesaw State University

Raman Scattering Measurements And Analyses Of Gan Thin Films Grown On Zno Substrates By Metalorganic Chemical Vapor Deposition, Zane Mcdaniel, Zhe Chuan Feng, Kevin Stokes

Symposium of Student Scholars

Metalorganic chemical vapor deposition (MOCVD) is a popularly used method of growing thin films of GaN on ZnO (GZ) substrates, which pair well due to their structural and characteristic similarities. In this research, optical characterization of the surface quality of GZ sample films is measured by analyzing Raman scattering (RS) using a Renishaw inVia spectrometer fitted with a 532nm laser. Samples were grown in an improved double injection block rotating disc reactor. Multiple samples' spectra show broad peaks that correspond with the E2 (high) and A1 (LO) branches of GaN, and nicely fitted curves are observed for the characteristic E2 …


Exploring Cathodoluminescence Evident Features Of Tungsten Disulfide, Molybdenum Disulfide, And Tungsten-Sulfide-Selenide, Nathan Mayer 2022 Bellarmine University

Exploring Cathodoluminescence Evident Features Of Tungsten Disulfide, Molybdenum Disulfide, And Tungsten-Sulfide-Selenide, Nathan Mayer

Undergraduate Theses

Cathodoluminescence (CL) microscopy can be used to characterize the quantum optical behaviors of two-dimensional nanostructures. To investigate this behavior, we mounted flakes of tungsten disulfide (WS2), molybdenum disulfide (MoS2), and tungsten-sulfide-selenide Janus structures (WSSe) on a SiO2 substrate and analyzed these samples under both high vacuum and low H2O vacuum conditions using a scanning electron microscope. We then captured CL and secondary-electron images of the samples at multiple electron-beam energies and currents (5 keV to 30 keV, and 0.5 nA to 5 nA, respectively). We used a range of beam currents and …


Physics 516: Electromagnetic Phenomena (Spring 2023), Philip C. Nelson 2022 University of Pennsylvania

Physics 516: Electromagnetic Phenomena (Spring 2023), Philip C. Nelson

Department of Physics Papers

These course notes are made publicly available in the hope that they will be useful. All reports of errata will be gratefully received. I will also be glad to hear from anyone who reads them, whether or not you find errors: pcn@upenn.edu.


An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li 2022 University of Nebraska - Lincoln

An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li

Faculty Publications from Nebraska Center for Materials and Nanoscience

Contrast transfer function (CTF) is a vital function in transmission electron microscopy (TEM). It expresses to what extent amplitudes converted from the phase changes of the diffracted waves contribute to the TEM image, including the effects of lens aberrations. Simulation is very helpful to understand the application of the function thoroughly. In this work, we develop the CTFscope as a component in the Landyne software suite, to calculate the CTF with temporal and spatial dumping envelopes for conventional TEM and to extend it to various aberrations (up to fifth order) for aberration-corrected (AC)- TEM. It also includes effects on the …


Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei 2022 University of Massachusetts Amherst

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates.

Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces.

In Chapter 2, we demonstrate the preparation …


Symmetry Breaking Effects In Low-Dimensional Quantum Systems, Ke Wang 2022 University of Massachusetts Amherst

Symmetry Breaking Effects In Low-Dimensional Quantum Systems, Ke Wang

Doctoral Dissertations

Quantum criticality in low-dimensional quantum systems is known to host exotic behaviors. In quantum one-dimension (1D), the emerging conformal group contains infinite generators, and conformal techniques, e.g., operator product expansion, give accurate and universal descriptions of underlying systems. In quantum two-dimension (2D), the electronic interaction causes singular corrections to Fermi-liquids characteristics. Meanwhile, the Dirac fermions in topological 2D materials can greatly enrich emerging phenomena. In this thesis, we study the symmetry-breaking effects of low-dimensional quantum criticality. In 1D, we consider two cases: time-reversal symmetry (TRS) breaking in the Majorana conformal field theory (CFT) and the absence of conformal symmetry in …


Reservoir Engineering Of Multi-Photon States In Circuit Quantum Electrodynamics, Jeffrey M. Gertler 2022 University of Massachusetts Amherst

Reservoir Engineering Of Multi-Photon States In Circuit Quantum Electrodynamics, Jeffrey M. Gertler

Doctoral Dissertations

The field of experimental quantum information has made significant progress towards useful computation but has been handicapped by the dissipative nature of physical qubits. Except for unwieldy and unrealized topological qubits, all quantum information systems experience natural dissipation, which limits the time scale for useful computation. However, this same dissipation, which induces errors requiring quantum error correction (QEC), can be used as a resource to perform a variety of important and unrealized tasks. In this thesis I discuss research into three uses of dissipation: manifold stabilization, state transfer, and QEC. With reservoir engineering, these tasks can be addressed in an …


Anomalous Transport, Quasiperiodicity, And Measurement Induced Phase Transitions, Utkarsh Agrawal 2022 University of Massachusetts Amherst

Anomalous Transport, Quasiperiodicity, And Measurement Induced Phase Transitions, Utkarsh Agrawal

Doctoral Dissertations

With the advent of the noisy-intermediate scale quantum (NISQ) era quantum computers are increasingly becoming a reality of the near future. Though universal computation still seems daunting, a great part of the excitement is about using quantum simulators to solve fundamental problems in fields ranging from quantum gravity to quantum many-body systems. This so-called second quantum revolution rests on two pillars. First, the ability to have precise control over experimental degrees of freedom is crucial for the realization of NISQ devices. Significant progress in the control and manipulation of qubits, atoms, and ions, as well as their interactions, has not …


Explorer 14 Magnetron Sputterer (Pvd-05) Standard Operating Procedure, Mohsen Azadi, Jason Alexander Röhr 2022 University of Pennsylvania

Explorer 14 Magnetron Sputterer (Pvd-05) Standard Operating Procedure, Mohsen Azadi, Jason Alexander Röhr

Standard Operating Procedures

Standard Operating Procedure for the Explorer 14 Magnetron Sputterer (PVD-05) located at the Quattrone Nanofabrication Facility within the Singh Center for Nanotechnology at the University of Pennsylvania


Controlling Electro-Magnetic Functionality Of Ruthenates By Heterostructure Design, Zeeshan Ali 2022 Louisiana State University and Agricultural and Mechanical College

Controlling Electro-Magnetic Functionality Of Ruthenates By Heterostructure Design, Zeeshan Ali

LSU Doctoral Dissertations

Perovskite oxides (ABO3) show wide range of functionalities originating from interplay of structural, spin, charge, and orbital degrees of freedoms. The bulk perovskite structure could be controlled via conventional chemical substitution, though exploiting heterostructure engineering novel ground states could be observed which otherwise are absent in bulk. In this thesis, the interest is to explore the electro-magnetic phenomena as complex oxides are confined in heterostructures.

I first investigate electromagnetic properties of ultrathin epitaxial ruthenate: SrRuO3 (SRO); spatially confined between SrTiO3 (STO) i.e., STO5-SROn-STO5 with n = 1- and 2-unit cells. It …


Lesker Pvd75 E-Beam Evaporator (Pvd-04) Standard Operating Procedure, David J. Jones, Jason A. Röhr 2022 University of Pennsylvania

Lesker Pvd75 E-Beam Evaporator (Pvd-04) Standard Operating Procedure, David J. Jones, Jason A. Röhr

Standard Operating Procedures

Standard Operating Procedure for the Lesker PVD75 E-beam Evaporator (PVD-04) located at the Quattrone Nanofabrication Facility within the Singh Center for Nanotechnology at the University of Pennsylvania


Digital Commons powered by bepress