Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,246 Full-Text Articles 3,778 Authors 624,642 Downloads 110 Institutions

All Articles in Condensed Matter Physics

Faceted Search

2,246 full-text articles. Page 1 of 90.

Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova 2023 University of Massachusetts Amherst

Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova

Doctoral Dissertations

Topological excitations are ubiquitous in nature, their charge being a naturally-quantized, conserved quantity that can exhibit particle-like behavior. Spinor Bose-Einstein condensates (BECs) are an exceptionally versatile system for the study and exploration of topological excitations. Between the spin-1 and spin-2 87Rb condensates there are seven possible broken-symmetry magnetic phases, with each one hosting unique opportunities for topological defects. We have created and observed several novel topological excitations in a spinor 87Rb BEC. In this dissertation I present and discuss three principal experimental findings: (1) The discovery of an Alice ring, or a half-quantum vortex ring, emerging from a …


On The Origins Of Life — Modelling The Initial Stages Of Complex Coacervate Droplet Formation, Yixuan Wu 2023 Western University, London, ON

On The Origins Of Life — Modelling The Initial Stages Of Complex Coacervate Droplet Formation, Yixuan Wu

Western Libraries Undergraduate Research Awards (WLURAs)

Coacervate droplets are considered a plausible model for protocells due to their spontaneous formation and ability to compartmentalize macromolecules such as nucleic acid and peptides. Although experimental studies have observed and synthesized coacervates under different laboratory conditions, little is known about their structure. Here we present atomistic molecular dynamic simulations of the interactions between water and oppositely charged proteins that cluster together in a salt-dependent process. Observing such liquid-liquid phase separation on an atomic level would serve as a model for the initial stages of complex coacervate formation. Molecular Dynamics was used to compute diagnostics of the structure at different …


Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge 2023 The Graduate Center, City University of New York

Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge

Dissertations, Theses, and Capstone Projects

Individual quantum systems in semiconductors are currently the most sought-after platform for applications in quantum science. Most notably, the nitrogen-vacancy (NV) center in diamond features a defect deep within the electronic bandgap, making it amenable for precise manipulation to help pave the way to perform fundamental quantum physics experimentation. The NV center also offers long coherence times and versatile spin-dependent fluorescent properties, making it an ideal candidate for a nanoscale magnetometer. Furthermore, multi-color excitation offers deterministic charge state manipulation. While ambient operation has been key to their appeal, bringing NVs to cryogenic conditions opens new opportunities for alternate forms of …


Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh 2023 The Graduate Center, City University of New York

Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in solid state systems is an intriguing process that allows one to exploit the advantages of both light and matter. In this context, microcavities have become essential platforms for studying the strong coupling regime, where hybrid light-matter states known as exciton-polaritons form, leading to enhanced light matter interaction, modified material properties, and novel quantum phenomena. In this thesis, we explore the phenomenology of exciton-polaritons in strained TMD microcavities, 2D perovskites, fluorescent proteins and organic dyes encompassing thermalization, polariton lasing, and the observation of nonlinear effects.

Transition metal dichalcogenides (TMDs) have emerged as a remarkable class of two- …


The Role Of Nuclear Quantum Effects In Supercooled Water And Amorphous Ice, Ali H. Eltareb 2023 The Graduate Center, City University of New York

The Role Of Nuclear Quantum Effects In Supercooled Water And Amorphous Ice, Ali H. Eltareb

Dissertations, Theses, and Capstone Projects

Water is one of the most important substances on Earth and plays a fundamental role in numerous scientific and engineering applications. Interestingly, water behaves much differently than other liquids. For example, water shows an anomalous density maximum at 277 K, the solid phase (ice) is less denser than the liquid, and its thermodynamic response functions, such as the specific heat CP and isothermal compressibility κT, also increase anomalously upon cooling. In the glassy state, water can exist in two different forms, low-density and high-density amorphous ice (LDA and HDA). While water has been scrutinized for many centuries, …


Ferroelectric Hafnia Surface In Action, Xia Hong 2023 University of Nebraska-Lincoln

Ferroelectric Hafnia Surface In Action, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

Piezoresponse microscopy and spectroscopy reveal the inextricable role of surface electrochemistry in stabilizing and controlling ferroelectricity in doped hafnia.

Doped hafnia (HfO2), a relatively new member of the ferroelectric family, has challenged in many ways our conventional perception of ferroelectric oxides. It possesses extremely localized electric dipoles that are independently switchable,1 making it immune to finite size effects — the loss of long-range dipole order in ferroic materials due to size scaling. While polycrystalline grains and microstructures can yield lower polarization and poorer cycling behavior in canonical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3, in …


A Simple Method For Determining Shallow Charge Distributions In Dielectrics Via Pulsed Electroacoustic Measurements, Zachary Gibson, J. R. Dennison 2023 Utah State University

A Simple Method For Determining Shallow Charge Distributions In Dielectrics Via Pulsed Electroacoustic Measurements, Zachary Gibson, J. R. Dennison

Journal Articles

The understanding of charge dynamics in dielectric materials is paramount in mitigating electrostatic discharge events for spacecraft. The most critical spacecraft charging events are found to result from incident electrons in the energy range of 10 keV to 50 keV. The charge embedded in dielectric materials in this energy range are deposited a distance into the material on the order of a few to tens of microns. One way to measure and understand the deposited charge is via pulsed electroacoustic measurements (PEA). However, the typical PEA spatial resolution of ~ 10 μm is not sufficient to resolve or discern charge …


Topological Hall Effect In Particulate Magnetic Nanostructure, Ahsan Ullah 2023 University of Nebraska - Lincoln

Topological Hall Effect In Particulate Magnetic Nanostructure, Ahsan Ullah

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Conduction electrons change their spin direction due to the exchange interaction with the lattice spins. Ideally, the spins of the conduction electrons follow the atomic spin adiabatically, so that spins like S1, S2, and S3 can be interpreted as time-ordered sequences t1 < t2 < t3. Such spin sequences yield a quantum-mechanical phase factor in the wave function,  →ei, where  is known as the Berry phase. The corresponding spin rotation translates into a Berry curvature and an emergent magnetic field and subsequently, Hall-effect contribution known as the topological Hall-effect. This dissertation explores topological Hall-effect in particulate magnets, where noncollinear spins are stabilized by competition between different magnetic interactions. The topologically non-trivial spin textures in these nanostructures are flower states, curling states, vortex, and magnetic bubbles, which give rise to topological Hall-effect and have finite spin chirality and Skyrmion number Q. Topological Hall-effect is investigated in noninteracting nanoparticles, exchanges coupled centrosymmetric nanoparticles, exchanges coupled non-centrosymmetric nanoparticles which possess Dzyaloshinskii-Moriya interaction (DMI), and exchanged coupled Hard and soft magnetic films. Micromagnetic modeling, simulations, analytical calculations, and experimental methods are used to determine topological Hall-effect. In very small noninteracting nanoparticles, the reverse magnetic fields enhance Q due to the flower state until the reversal occurs, whereas, for particles with a radius greater than coherence radius, the Q jumps to a larger value at the nucleation field representing the curling state. The comparisons of magnetization patterns between experimental and computed magnetic force microscopy (MFM) measurements show the presence of spin chirality. Magnetic and Hall-effect measurements identify topological Hall-effect in the exchange-coupled Co and CoSi-nanoparticle films. The origin of the topological Hall-effect namely, the chiral domains with domain-wall chirality quantified by an integer skyrmion number in Co and chiral spins with partial skyrmion number in CoSi. These spin structures are different from the Skyrmions due to DMI in B-20 crystals and multilayered thin films with Cnv symmetry. In these films THE caused by cooperative magnetization reversal in the exchange-coupled Co-nanoparticles and peripheral chiral spin textures in CoSi-nanoparticles.

Advisor: Xiaoshan Xu


Construction Of Zinc Oxide And Magnesium Oxide Heterostructures By Atomic Layer Deposition, Netra Sharma 2023 University of Wisconsin-Milwaukee

Construction Of Zinc Oxide And Magnesium Oxide Heterostructures By Atomic Layer Deposition, Netra Sharma

Theses and Dissertations

Zinc oxide (ZnO) has gained wide technological interest due to its direct bandgap of ~3.37 eV and high exciton binding energy of ~60 meV and has exhibited promise for numerous electronics and opto-electronics applications. ZnO can also be alloyed with materials like magnesium oxide (MgO) to tailor the bandgap. Such heterostructures (Zn, Mg)O can be used in optoelectronic devices like quantum well lasers, photodetectors, etc.In this work, we studied the physical properties of zinc oxide (ZnO), magnesium oxide (MgO) and the heterostructures of zinc and magnesium oxide (Zn,Mg)O grown by atomic layer deposition (ALD) using a homemade viscous flow type …


Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy 2023 University of Wisconsin-Milwaukee

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy

Theses and Dissertations

ABSTRACT

SYNTHESIS, CHARACTERIZATION, AND SIMULATION OF TWO-DIMENSIONAL MATERIALS

by

Lawrence Hudy

The University of Wisconsin-Milwaukee, 2023Under the Supervision of Professor Michael Weinert

This dissertation focuses on my journey through many aspects of surface science leading to the first principles investigation of transition metal dichalcogenides studying the impact of defects, twist, and decreasing interlayer separation to probe their effect on the electronic properties of these materials. My journey started out learning many aspects of material science such as methods for material synthesis and characterization but later ended on simulation of material properties using density functional theory. In the first experiments, we …


Two-Dimensional Crystal Phases Of Graphene Monoxide & Interaction Of Lithium With Graphene Monoxide, Danylo Radevych 2023 University of Wisconsin-Milwaukee

Two-Dimensional Crystal Phases Of Graphene Monoxide & Interaction Of Lithium With Graphene Monoxide, Danylo Radevych

Theses and Dissertations

This work explores the possible existence, properties, and potential applications of different polytypes of graphene monoxide (GmO) - two-dimensional crystalline monolayers composed of equal numbers of O and C atoms. In addition to previously experimentally discovered and theoretically modeled α phase, prediction and discovery of the second phase - β-GmO - is reported along with evaluation of six other possible phases. Structural parameters, electronic and mechanical properties of all the phases, including α-GmO, are determined using density functional calculations and compared. It is suggested that multiple phases of GmO can co-exist in the same composite, and developing a synthesis process …


Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert 2023 University of New Mexico

Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

This dissertation explores the development and application of diamond color centers, specifically the silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers, in super-resolution microscopy and magnetic imaging techniques. It demonstrates the potential of SiV centers as photostable fluorophores in stimulated emission depletion (STED) microscopy, with a resolution of approximately 90 nm. The research also presents a method for nanoscale magnetic microscopy using NV centers by combining charge state depletion (CSD) microscopy with optically detected magnetic resonance (ODMR) to image magnetic fields produced by 30 nm iron-oxide nanoparticles. The individual magnetic feature width reaches ~100 nm while resolving magnetic field patterns from nanoparticles …


Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan 2023 Clemson University

Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan

All Dissertations

In this thesis, we discuss the existence of spin and charge currents in systems with broken spin inversion symmetry proportional to the magnitude square of the driving electric and thermal fields. This outcome is predicated on symmetry considerations in the momentum space, whereby the product between the current operator and the out-of-equilibrium distribution function has to be even.

First, we derive the second-order correction to the particle distribution function $\delta f^{(2)}$ in a semi-classical approximation, considering the local change in the equilibrium distribution function caused by external fields. Our approach departs significantly from the previous theory where $\delta f^{(2)}$ is …


Exploring Skyrmions Dynamics And Structure Using Neutron Scattering, W-L-Namila Chandula Liyanage 2023 University of Tennessee, Knoxville

Exploring Skyrmions Dynamics And Structure Using Neutron Scattering, W-L-Namila Chandula Liyanage

Doctoral Dissertations

Magnetic skyrmions are topologically protected chiral spin textures with great potential for next-generation consumer technologies. These magnetic structures can be described as spins continuously wrapping into a closed coplanar loop, featuring a core and fencing perimeter with opposite out-of-plane orientations. While conventional depictions of magnetic skyrmions use a two-dimensional projection, recent research underscores the importance of their three-dimensional structure in determining their topology and stability. Magnetic skyrmions typically emerge just below the curie temperature of a magnetic material, creating what is known as a skyrmion pocket. In most materials the stability pocket is at low temperatures and finite fields, however …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park 2023 University of Tennessee, Knoxville

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Growth And Emergent Functionalities Of Oxide Thin Films Utilizing Interface Engineering, Detian Yang 2023 University of Nebraska–Lincoln

Growth And Emergent Functionalities Of Oxide Thin Films Utilizing Interface Engineering, Detian Yang

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Complex oxide interfaces have offered intriguing novel emergent phenomena and multiple functionalities through interfacial reconstructions of spin, orbital, charge, and lattice degrees of freedom. Interface engineering via manipulating interfacial interaction, defects and multiple interfacial quantum charges and orders constitutes the essential method and technique to achieve desired functionalities in oxide heterostructures. In this thesis, shown are two examples of utilizing interfacial reconstruction and interfacial strain engineering to achieve intrinsic exchange bias and realize epitaxial growth of mixed-valence hexagonal manganite thin films, respectively.

Firstly, we demonstrated intrinsic exchange bias induced by interfacial reconstruction in NixCoyFe3-x-yO …


Enhanced Acousto-Optic Properties Of Silicon Carbide Based Layered Structure, Namrata Dewan Soni 2023 Department of Physics, Hansraj College, University of Delhi, Delhi, India

Enhanced Acousto-Optic Properties Of Silicon Carbide Based Layered Structure, Namrata Dewan Soni

Al-Bahir Journal for Engineering and Pure Sciences

This study investigates the feasibility of using silicon carbide-based layered surface acoustic wave (SAW) devices in acousto-optic applications. The acousto-optic properties of the temperature-stable layered structure TeO3/SiC/128oY-X LiNbO3 are investigated through theoretical analysis. This analysis includes the evaluation of key parameters such as the overlap integral, figure of merit, and diffraction efficiency. The SAW propagation characteristics and field profiles required for these calculations are obtained using SAW software. Results show that the layered structure has high diffraction efficiency of nearly 96% and a promising value for the acousto-optic figure of merit, indicating potential use in low driving power acousto-optic devices. …


The Study Of Excitons In 2d Novel Materials And Their Van Der Waals Heterostructures In The Magnetic Field, Anastasia Spiridonova 2023 The Graduate Center, City University of New York

The Study Of Excitons In 2d Novel Materials And Their Van Der Waals Heterostructures In The Magnetic Field, Anastasia Spiridonova

Dissertations, Theses, and Capstone Projects

This research focuses on the direct and indirect excitons in Rydberg states in monolayers, bilayers, and van der Waals heterostructures composed of 2D semiconductors in the presence of the external magnetic field. In our work, we report binding energies of direct and indirect excitons in Rydberg states, the energy contribution from the magnetic field to the binding energies of magnetoexcitons, and diamagnetic coefficients (DMCs) of magnetoexcitons.

We study isotropic materials: transition metal dichalcogenides, TMDCs (WSe2, WS2, MoSe2, MoS2), and Xenes (silicene, germanene, stanene), and anisotropic materials: phosphorene and transition metal trichalcogenides, TMTCs …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn 2023 Dartmouth College

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob 2023 University of Maine

Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob

Electronic Theses and Dissertations

Yttria-stabilized zirconia (YSZ) is a widely used ceramic material in solid oxide fuel cells, oxygen sensors, and sensing applications due to its high ionic conductivity, chemical inertness, and thermal stability. YSZ is promising active coating for use in miniaturized harsh environment wireless surface acoustic sensors to monitor gases such as H2. Adding catalytic Pt nanoparticles can enhance gas reactivity and lead to associated film conductivity changes.

In this work, thin films with an (8% Y2O3 - 92% ZrO2) composition were deposited onto piezoelectric langasite substrates using RF magnetron sputtering in Ar:O2 - …


Digital Commons powered by bepress