Spatial Variability Of Alkali-Metal Polarization,
2023
William & Mary
Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell
Undergraduate Honors Theses
An experiment was conducted at William & Mary to study how alkali polarization varies spatially in a spherical cell during the process of optical pumping. Similar cells are used to study the neutron via electron scattering from polarized 3He nuclei, and those experiments could be improved if alkali polarization is maximized and uniformly distributed throughout the cell. The results of this experiment indicate that the alkali polarization is non-uniform and more heavily concentrated on the side of the cell facing the pump laser.
Materials Characterization For Microwave Atom Chip Development,
2023
William & Mary
Materials Characterization For Microwave Atom Chip Development, Jordan Shields
Undergraduate Honors Theses
This thesis describes research to characterize materials to be implemented on a microwave atom trap chip, which will be able to trap and spatially manipulate atoms using the spin-specific microwave AC Zeeman effect. Potential applications of this research include atom-based interferometry and quantum computing.
Namely, this thesis describes the characterization of the following: (1) the dielectric constant of a well-characterized substrate, Rogers RO4350B, in order to provide proof-of-concept for a method that can be applied to the chip’s substrate, aluminum nitride (AlN), (2) the maximum current that will be able to be applied to the chip, and (3) surface roughness …
Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy,
2023
William & Mary
Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner
Undergraduate Honors Theses
This thesis describes the work done to improve an external cavity diode laser. These improvements consisted of constructing an insulated housing to stabilize the temperature of the laser, tuning the proportional-integral-derivative feedback of the temperature controller, achieving resonance frequencies of rubidium, and implementing and optimizing feed-forward scanning of the frequency of the laser. The laser was then successfully used to measure the linewidth of another laser in the laboratory to better understand how that laser could be best used. The knowledge gained in this thesis can also be used to change the frequency of the laser to achieve other resonances …
Electron Charge To Mass Ratio,
2023
Arkansas Tech University
Electron Charge To Mass Ratio, Tori Freeman, Quinlin Reynolds
ATU Research Symposium
The purpose of this experiment is to confirm the e/m ratio and charge of an electron discovered initially by J.J. Thomson. We use an electron beam generated inside an e/m tube and Helmholtz coils that generate a magnetic field which deflects the path of the electrons. The radius of the path can be measured and from there the magnitude of the magnetic field and the charge-to-mass ratio can be found. This experiment was successful in confirming the results found by J.J. Thomson and his cathode ray experiments. The results of this experiment had a 0.5% error with the accepted e/m …
Process Of Building And Designing A Spectrometer,
2023
Arkansas Tech University
Process Of Building And Designing A Spectrometer, Tori Freeman
ATU Research Symposium
Spectroscopy is the study and measurement of electromagnetic spectra resulting from electromagnetic radiation interacting with matter. Each element when excited emits a unique spectrum containing light of various wavelengths. The identity of the element can then be determined by examining the spectra. A spectrometer is a scientific instrument that utilizes optics, mirrors, and lenses to capture and examine spectra. A classroom spectrometer is potentially useful in the demonstration of numerous physics principles such as diffraction, reflection, ray optics, etc.
Keywords: Spectrometry, optics, spectrum
Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction,
2023
University of Nebraska–Lincoln
Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction, Yanwei Xiong
Theses, Dissertations, and Student Research: Department of Physics and Astronomy
Capturing the structural changes during a molecular reaction with ultrafast electron diffraction (UED) requires a high spatiotemporal resolution and sufficiently high signal-to-noise to record the signals with high fidelity. In this dissertation, I have focused on the development of a tabletop gas phase keV-UED setup with a femtosecond temporal resolution. A DC electron gun was employed to generate electron pulses with a high repetition rate of 5 kHz. The space charge effect in the electron pulse was ameliorated by compressing the 90 keV electron pulse longitudinally with a time varying electric field in an RF cavity. The velocity mismatch between …
New Far-Infrared Laser Frequencies Generated By Ch3cn, Cd3cn, 13ch3i, Cd3i, And 13cd3i,
2023
Central Washington University
New Far-Infrared Laser Frequencies Generated By Ch3cn, Cd3cn, 13ch3i, Cd3i, And 13cd3i, Michael Jackson
All Faculty Scholarship for the College of the Sciences
Heterodyne techniques have been used to experimentally determine, for the first time, the frequencies for nineteen laser emissions ranging from 264 to 984 GHz. These laser emissions were generated by optically pumping either CH3CN, CD3CN, 13CH3, CD3I, or 13CD3I with a CO2 laser. This includes the newly discovered 566.325-μ m laser emission from optically pumped 13CD3I. The fractional uncertainties with which these frequencies were experimentally determined, up to ± 5 × 10− 7, were of sufficient accuracy to confirm or revise …
Measurement Of Proton Light Yield Of Water-Based Liquid Scintillator,
2023
University of California - Berkeley
Measurement Of Proton Light Yield Of Water-Based Liquid Scintillator, E. J. Callaghan, B. L. Goldblum, J. A. Brown, T. A. Laplace, Juan J. Manfredi, M. Yeh, G. D. Orebi Gann
Faculty Publications
The proton light yield of liquid scintillators is an important property in the context of their use in large-scale neutrino experiments, with direct implications for neutrino-proton scattering measurements and the discrimination of fast neutrons from inverse β-decay coincidence signals. This work presents the first measurement of the proton light yield of a water-based liquid scintillator (WbLS) formulated from 5% linear alkyl benzene (LAB), at energies below 20 MeV, as well as a measurement of the proton light yield of a pure LAB + 2 g/L 2,5-diphenyloxazole (PPO) mixture (LABPPO). The measurements were performed using a double time-of-flight method and a …
Ml-Based Surrogates And Emulators,
2023
Old Dominion University
Ml-Based Surrogates And Emulators, Tareq Alghamdi, Yaohang Li, Nobuo Sato
College of Sciences Posters
No abstract provided.
Recent Advances In Experimental Design And Data Analysis To Characterize Prokaryotic Motility,
2023
Portland State University
Recent Advances In Experimental Design And Data Analysis To Characterize Prokaryotic Motility, Megan M. Dubay, Jacqueline Acres, Max Riekeles, Jay Nadeau
Physics Faculty Publications and Presentations
Bacterial motility plays a key role in important cell processes such as chemotaxis and biofilm formation, but is challenging to quantify due to the small size of the individual microorganisms and the complex interplay of biological and physical factors that influence motility phenotypes. Swimming, the first type of motility described in bacteria, still remains largely unquantified. Light microscopy has enabled qualitative characterization of swimming patterns seen in different strains, such as run and tumble, run-reverse-flick, run and slow, stop and coil, and push and pull, which has allowed for elucidation of the underlying physics. However, quantifying these behaviors (e.g., identifying …
Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties,
2023
Missouri State University
Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan
MSU Graduate Theses
The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature composites (UHTC) have been developed through the implementation of deep neural network (DNN) algorithms. These algorithms employed two different approaches and corresponding codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The samples for training and validation sets of the forces, energy, and virial data were obtained from the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) calculations, including the simulation data from the ultra-high temperature region (> 2000K). The study …
Investigations Into The Electronic And Magnetic Properties Of (Crps4)N Layers,
2023
University of North Florida
Investigations Into The Electronic And Magnetic Properties Of (Crps4)N Layers, Alexandria R. Alcantara
UNF Graduate Theses and Dissertations
2D magnetic semiconductors have become of interest due to their magneto-optical effects in lower dimensionality. More specifically, CrPS4 has gained renewed attention due to its A-type AFM order and air stability prompting analysis and stability studies in its layered forms for use in scalable technology such as spintronic and optoelectronic devices. In this study, we benchmark our approach using the SCAN meta-GGA functional used without U-parameterization on bulk CrPS4 to demonstrate the accuracy of our methodology to use as tools to go beyond current CrPS4 theoretical studies. We examine the 2D electronic nature and optical spectrum for use in experimental …
Detection And Diagnosis Of Bacterial Pathogens In Blood And Urine Using Laser-Induced Breakdown Spectroscopy,
2023
University of Windsor
Detection And Diagnosis Of Bacterial Pathogens In Blood And Urine Using Laser-Induced Breakdown Spectroscopy, Emma J.M. Blanchette
Electronic Theses and Dissertations
The aim of this thesis is to expand on and improve the existing techniques used for detecting and identifying bacterial pathogens in clinical specimens with laser-induced breakdown spectroscopy (LIBS). Specifically, the existing experimental procedures, including bacterial sample preparation and data acquisition, as well as the data analysis with chemometric algorithms were investigated. Substantial reductions in LIBS background signal were achieved by implementing rigorous cleaning steps and the introduction of the use of ultrapure water. Following this, a database of LIBS spectra was acquired from specimens of E. coli, S. aureus, E. cloacae, M. smegmatis, and P. …
Optical Tweezers: Exerting Force With Light,
2023
Scripps College
Optical Tweezers: Exerting Force With Light, Gabriella Seifert
Scripps Senior Theses
Photons carry momentum. When a tightly-focused beam of photons hit a particle, they transfer some of their momentum to the particle, exerting a force. Optical tweezers take advantage of this phenomenon to trap (or “tweeze”) a spherical bead just after the focus of a diverging laser beam, creating a potential well that pulls in beads. In this thesis, I predict the force exerted on trapped beads and measure the actual force using an optical tweezers setup that I built. To predict the force, I follow the path of all possible rays from a diverging beam incident on a spherical bead …
Atom-Specific Probing Of Electron Dynamics In An Atomic Adsorbate By Time-Resolved X-Ray Spectroscopy,
2022
Stockholm University
Atom-Specific Probing Of Electron Dynamics In An Atomic Adsorbate By Time-Resolved X-Ray Spectroscopy, Simon Schreck, Elias Diesen, Martina Dell'angela, Chang Liu, Matthew Weston, Flavio Capotondi, Hirohito Ogasawara, Jerry Larue, Roberto Costantini, Martin Beye, Piter S. Miedema, Joakim Halldin Stenlid, Jörgen Gladh, Boyang Liu, Hsin-Yi Wang, Fivos Perakis, Filippo Cavalca, Sergey Koroidov, Peter Amann, Emanuele Pedersoli, Denys Naumenko, Ivaylo Nikolov, Lorenzo Raimondi, Frank Abild-Pedersen, Tony F. Heinz, Johannes Voss, Alan C. Luntz, Anders Nilsson
Biology, Chemistry, and Environmental Sciences Faculty Articles and Research
The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100 fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds …
Density Functional Theory (Dft) Study Of A Binary Mixture Of Mbba And Paa Liquid Crystal For Thz Application,
2022
Department of Physics, School for Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh 226025, India
Density Functional Theory (Dft) Study Of A Binary Mixture Of Mbba And Paa Liquid Crystal For Thz Application, Mirtunjai Mishra, Narinder Kumar, Pawan Singh, B. S. Rawat, Reena Dhyani, Devendra Singh, Devesh Kumar
Makara Journal of Science
The present scenario expresses the electro-optical effect of abinary mixture of MBBA and PAA liquid crystal studied under the impact of the electric field in THz frequency. The binary mixture has a negative order parameter, negative birefringence, and a nematic phase stability under such an electric field. The refractive index remains constant at high THz frequency. The director angle is sensitive to THz frequency, contributing to the maximum fluctuation. The atomic contribution of a binary mixture is approximately equal to the molecular contribution. The binary mixture has a remarkably high bandgap. The C-H, O-C, C-N atom stretching, and wagging of …
Trapping And Cooling Of Ca+ For Cold Ion-Radical Collisions,
2022
University of Nevada, Las Vegas
Trapping And Cooling Of Ca+ For Cold Ion-Radical Collisions, Bernardo Gutierrez
Undergraduate Research Symposium Posters
Free radicals are molecules that contain an unpaired valence electron which induces high reactivity. Ion radical reactions are typically exothermic and have low (or zero) activation energy. It is for these reasons that ion-radical reactions are believed to dominate in interstellar clouds where temperatures hover around 3-10K. State-to-state measurements require precision control of both reactants.
Supercontinuum Light Generation Via Non-Linear Effects In Hollow-Core Fiber,
2022
University of Arkansas, Fayetteville
Supercontinuum Light Generation Via Non-Linear Effects In Hollow-Core Fiber, Skyler Gulati
Physics Student Works
The field of non-linear optics has gained traction in the last couple decades due to the variable generation of wavelengths which are less deterministic than within traditional optics. Using non-linear mediums, including hollow-core fibers (HCF), generation of wavelengths spanning into the vacuum ultraviolet (VUV) wavelength range is possible. These short wavelengths can be utilized within electron spectroscopy-based methods of material science like angle-resolved photoemission spectroscopy (ARPES). This technique most often uses specific photoemission lines of atoms in discharge lamps, however, with the frequency dispersion capabilities of HCF, broad band creation can allow for variable wavelength selection through filtering specific wavelengths …
Coupled Spherical-Cavities,
2022
Technion Israel Institute of Technology
Coupled Spherical-Cavities, Stanislav Kreps, Vladimir Shuvayev, Mark Douvidzon, Baheej Bathish, Tom Lenkiewicz Abudi, Amirreza Ghaznavi, Jie Xu, Yang Lin, Lev Deych, Tal Carmon
Publications and Research
In this work, we study theoretically and experimentally optical modes of photonic molecules—clusters of optically coupled spherical resonators. Unlike previous studies, we do not use stems to hold spheres in their positions relying, instead on optical tweezers to maintain desired structures. The modes of the coupled resonators are excited using a tapered fiber and are observed as resonances with a quality factor as high as 107. Using the fluorescent mapping technique, we observe families of coupled modes with similar spatial and spectral shapes repeating every free spectral range (a spectral separation between adjacent resonances of individual spheres). Experimental results are …
Whispering Gallery Modes Of A Triatomic Photonic Molecule,
2022
CUNY Queens College
Whispering Gallery Modes Of A Triatomic Photonic Molecule, Vladimir Shuvayev, Stanislav Kreps, Tal Carmon, Lev Deych
Publications and Research
In this paper, we present the results of numerical simulations of the optical spectra of a three-sphere photonic molecule. The configuration of the system was continuously modified from linear to triangular, in-plane with the fundamental mode excited in one of the spheres and perpendicular to it. We found the relative insensitivity of the spectra to the in-plane deviation from the linear arrangement up to about 110°. For larger angles, the spectra show significant modification consisting of the major spectral peaks splitting and shifting. On the contrary, the spectra are quite sensitive to out-of-plane molecule deviation, even at small angles. Thus, …
