Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,993 Full-Text Articles 4,419 Authors 383,669 Downloads 138 Institutions

All Articles in Atomic, Molecular and Optical Physics

Faceted Search

1,993 full-text articles. Page 1 of 59.

Laser-Excitation Spectroscopy Of Niobium Hydride And Tantalum Hydride, Siddhant Singh 2021 Macalester College

Laser-Excitation Spectroscopy Of Niobium Hydride And Tantalum Hydride, Siddhant Singh

Macalester Journal of Physics and Astronomy

The experimental results presented in this paper shed light on some of the fundamental bonding characteristics of NbH and TaH. Six bands of niobium hydride and five weak bands of tantalum hydride were observed for the first time using laser excitation spectroscopy. The rotational assignments of observed bands were confirmed using dispersed fluorescence experiments for NbH and by checking the internal consistency of a global least squares fit for the weaker bands of TaH. For TaH, we were able to determine the term energies and molecular constants of each of its observed states to a high degree of accuracy by ...


Simulation Of Optical Properties Of Dielectric Layers From Visible To Near Infrared Spectral Range, Andrew Cochran, Cory Conkel 2021 Ohio Northern University

Simulation Of Optical Properties Of Dielectric Layers From Visible To Near Infrared Spectral Range, Andrew Cochran, Cory Conkel

ONU Student Research Colloquium

Optical properties of dielectrics play a critical role in various applications including the design and manufacture of optical components & devices such as detectors, filters, imagers, lenses, optical coatings, photonic crystals, sensors and waveguides, and solar cells. Radiative properties of varying thicknesses of different dielectrics such as Aluminum Oxide (Al2O3), Silicon Dioxide (SiO2), Indium Tin Oxide (ITO), Magnesium Fluoride (MgF2) and Silicon Nitride (Si3N4) have been simulated and compared in the range of visible to near infrared by mathematical modelling using MATLAB simulations. The results of the evolution of the radiative properties, as a function of dielectric material thickness, on silicon ...


Dipole Emission Characteristics Near A Topological Insulator Sphere Coated With A Metallic Nanoshell, Huai-Yi Xie, Railing Chang, P. T. Leung 2021 Institute of Nuclear Energy Research, Atomic Energy Council

Dipole Emission Characteristics Near A Topological Insulator Sphere Coated With A Metallic Nanoshell, Huai-Yi Xie, Railing Chang, P. T. Leung

Physics Faculty Publications and Presentations

Topological insulators (TI) are quantum states of (2D/3D) matter with an insulating interior but conducting edge/surface states, with these boundary conducting states being protected topologically by time-reversal symmetry. Composite materials of heavy atoms such as Bi2Te3 can be fabricated to show TI properties due to the strong intrinsic spin-orbit coupling of the electrons in these materials. Among the so many intriguing physical properties of these materials, their topological magneto-electric (TME) response is unique and has been studied intensively in the literature, leading to intriguing optical effects such as Faraday and Kerr rotations of incident polarized ...


Direct Visualization Of 3-Dimensional Force And Energy Map Of A Single Molecular Switch, Abeykoon Mudiyanselage Shashika Darshani Wijerathna, Zaw Myo Win, K. Z. Latt, Yang Li, A. T. Ngo, L. Curtiss, R. Zhang, S. W. Hla, Y. Zhang 2021 Old Dominion University

Direct Visualization Of 3-Dimensional Force And Energy Map Of A Single Molecular Switch, Abeykoon Mudiyanselage Shashika Darshani Wijerathna, Zaw Myo Win, K. Z. Latt, Yang Li, A. T. Ngo, L. Curtiss, R. Zhang, S. W. Hla, Y. Zhang

College of Sciences Posters

Mechanical properties of molecules adsorbed on materials surfaces are increasingly vital for the applications of molecular thin films. Here, we conduct a fundamental research to induce conformational change mechanically on a single molecule and quantify the driving force needed for such molecular shape switch via a low temperature (~ 5K) Scanning Tunneling Microscope (STM) and Qplus Atomic Force Microscope (Q+AFM). Our measurement maps a three-dimensional landscape for mechanical potential and force at single molecule level with high spatial resolution in all three dimensions of a few angstrom (10-10 m).

Molecule TBrPP-Co (a cobalt porphyrin) deposited on an atomically clean ...


Toward Improving Understanding Of The Structure And Biophysics Of Glycosaminoglycans, Elizabeth K. Whitmore 2021 University of New England

Toward Improving Understanding Of The Structure And Biophysics Of Glycosaminoglycans, Elizabeth K. Whitmore

Electronic Theses and Dissertations

Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) that mediate PG bioactivities, including signal transduction, tissue morphogenesis, and matrix assembly. To understand GAG function, it is important to understand GAG structure and biophysics at atomic resolution. This is a challenge for existing experimental and computational methods because GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharides. Molecular dynamics (MD) simulations come close to overcoming this challenge but are only feasible for short GAG polymers. To address this problem, we developed an algorithm that applies conformations from unbiased all-atom explicit-solvent MD simulations of short GAG polymers ...


Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner 2021 University of Nebraska - Lincoln

Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner

Honors Theses, University of Nebraska-Lincoln

This thesis describes the experimental apparatus and procedure used to measure the excitation function of the 2p53p 3D3 state of neon. First I describe the effect on this excitation of negative ion resonances and previous experiments to measure the excitation function, as well as suggestions for future applications of such studies. Then the experimental apparatus is described in three parts. The vacuum system uses a turbomolecular pump to decrease the pressure of the chamber to as low as 4*10-9 Torr. The electron beam system incorporates a trochoidal electron monochromator to send a highly monochromatic ...


Determination Of The Rydberg Constant From The Emission Spectra Of H And He+, Kyle D. Shaffer 2021 Department of Chemistry, West Chester University of Pennsylvania

Determination Of The Rydberg Constant From The Emission Spectra Of H And He+, Kyle D. Shaffer

Ramifications

Abstract

In this experiment, the Rydberg constants for the hydrogen atom and He+ were determined by analysis of the emission spectra of Hand He, respectively, in comparison to the principal quantum numbers of each transition. Using both a hydrogen and then a helium atomic lamp attached to a 0.5 m grating spectrometer and a photomultiplier detector (PMT), a change in voltage detected by the PMT can be paired with a corresponding wavelength passing through the spectrometer from each emission peak in the visible to ultraviolet range. The peaks acquired from this change in voltage were analyzed to find their ...


Plasmonic Waveguides To Enhance Quantum Electrodynamic Phenomena At The Nanoscale, Ying Li, Christos Argyropoulos 2021 Nanjing University of Information Science and Technology

Plasmonic Waveguides To Enhance Quantum Electrodynamic Phenomena At The Nanoscale, Ying Li, Christos Argyropoulos

Faculty Publications from the Department of Electrical and Computer Engineering

The emerging field of plasmonics can lead to enhanced light-matter interactions at extremely nanoscale regions. Plasmonic (metallic) devices promise to efficiently control both classical and quantum properties of light. Plasmonic waveguides are usually used to excite confined electromagnetic modes at the nanoscale that can strongly interact with matter. The analysis of these nanowaveguides exhibits similarities with their low frequency microwave counterparts. In this article, we review ways to study plasmonic nanostructures coupled to quantum optical emitters from a classical electromagnetic perspective. These quantum emitters are mainly used to generate single-photon quantum light that can be employed as a quantum bit ...


Interactions Of Organic Fluorophores With Plasmonic Surface Lattice Resonances, Robert J. Collison 2021 The Graduate Center, City University of New York

Interactions Of Organic Fluorophores With Plasmonic Surface Lattice Resonances, Robert J. Collison

Dissertations, Theses, and Capstone Projects

It is common knowledge that metals, alloys and pure elements alike, are lustrous and reflective, the more so when a metal surface is flat, polished, and free from oxidation and surface fouling. However, some metals reflect visible light, in the 380 nm to 740 nm range of wavelengths, much more strongly than others. In particular, some metals reflect wavelengths in certain portions of the ultraviolet (UV), visible, and near-infrared (NIR) regime, let us say 200 nm to 2000 nm, while absorbing light strongly in other segments of this range. There are several factors that account for this difference between various ...


Transmission Zeros With Topological Symmetry In Complex Systems, Yuhao Kang, Azriel Genack 2021 CUNY Queens College

Transmission Zeros With Topological Symmetry In Complex Systems, Yuhao Kang, Azriel Genack

Publications and Research

Understanding vanishing transmission in Fano resonances in quantum systems and metamaterials and perfect and ultralow transmission in disordered media, has advanced the understanding and applications of wave interactions. Here we use analytic theory and numerical simulations to understand and control the transmission and transmission time in complex systems by deforming a medium and by adjusting the level of gain or loss. Unlike the zeros of the scattering matrix, the position and motion of the zeros of the determinant of the transmission matrix in the complex plane of frequency and field decay rate have robust topological properties. In systems without loss ...


Acute Growth Inhibition & Toxicity Analysis Of Nano-Polystyrene Spheres On Raphidocelis Subcapitata, A. Reynolds, Michelle Giltrap, Gordon Chambers 2021 Technological University Dublin

Acute Growth Inhibition & Toxicity Analysis Of Nano-Polystyrene Spheres On Raphidocelis Subcapitata, A. Reynolds, Michelle Giltrap, Gordon Chambers

Articles

Micro/nano-plastics (MNPs) have been found within many environments and organisms including humans, making them a significant and growing concern. Initial research into the potential detrimental effects these MNPs both from acute and chronic exposure has been ongoing but still requires substantially more data to clarify. This research presents the response of nano-polystyrene (NPS) on Raphidocelis subcapitata, a freshwater alga, under an existing acute toxicity test along with additional analytical techniques to try identifying possible sources of toxicity. R. subcapitata cells were exposed for 72 h to a concentration range of 0–100 mg/l NPS. Growth Inhibition (GI) testing ...


Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel 2020 New Jersey Institute of Technology

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention ...


Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson 2020 University of New Hampshire

Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson

Student Research Projects

This thesis presents an organized explanation and breakdown of the Maximum Likelihood Expectation Maximization image reconstruction algorithm. This background research was used to develop a means of implementing the algorithm into the imaging code for UNH's Field Deployable Imaging Neutron Detector to improve its ability to resolve complex neutron sources. This thesis provides an overview for this implementation scheme, and include the results of a couple of reconstruction tests for the algorithm. A discussion is given on the current state of the algorithm and its integration with the neutron detector system, and suggestions are given for how the work ...


Dft-Based Study Of Electric Field Effect On The Polarizability Of Three Ringed Nematic Liquid Crystal Molecules, Pranav Upadhyay, Mirtunjai Mishra, Ankur Trivedi, Jitendra Kumar, Asheesh Kumar, Devesh Kumar 2020 Department of Physics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India

Dft-Based Study Of Electric Field Effect On The Polarizability Of Three Ringed Nematic Liquid Crystal Molecules, Pranav Upadhyay, Mirtunjai Mishra, Ankur Trivedi, Jitendra Kumar, Asheesh Kumar, Devesh Kumar

Makara Journal of Science

Owing to its successful application to complex molecular systems, computational density functional theory (DFT) has been used to study the effect of an electric field on the molecular polarizability and HOMO–LUMO gap of 1-phenyl-4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}benzene (1) and its fluoro-, chloro-, and cyano- derivatives, namely, 1-fluoro-4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzene (2), 1-chloro-4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzene (3), and 4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzonitrile (4). These molecules belong to the family of nematic liquid crystals with three rings: two benzene and one cyclohexane. Furthermore ...


Driven Dipolariton Transistors In Y-Shaped Channels, Patrick Serafin, Tim Byrnes, German Kolmakov V 2020 CUNY New York City College of Technology

Driven Dipolariton Transistors In Y-Shaped Channels, Patrick Serafin, Tim Byrnes, German Kolmakov V

Publications and Research

Exciton-dipolaritons are investigated as a platform for realizing working elements of a polaritronic transistor. Exciton-dipolaritons are three-way superposition of cavity photons, direct and indirect excitons in a bilayer semiconducting system embedded in an optical microcavity. Using the forced diffusion equation for dipolaritons, we study the room-temperature dynamics of dipolaritons in a transition-metal dichalcogenide (TMD) heterogeneous bilayer. Specifically, we considered a MoSe2-WS2 heterostructure, where a Y-shaped channel guiding the dipolariton propagation is produced. We demonstrate that polaritronic signals can be redistributed in the channels by applying a driving voltage in an optimal direction. Our findings open a route ...


Physics 516: Electromagnetic Phenomena (Spring 2020), Philip C. Nelson 2020 University of Pennsylvania

Physics 516: Electromagnetic Phenomena (Spring 2020), Philip C. Nelson

Department of Physics Papers

These course notes are made publicly available in the hope that they will be useful. All reports of errata will be gratefully received. I will also be glad to hear from anyone who reads them, whether or not you find errors: pcn@upenn.edu.


Applications Of Cathodoluminescence In Plasmonic Nanostructures And Ultrathin Inas Quantum Layers, Qigeng Yan 2020 University of Arkansas, Fayetteville

Applications Of Cathodoluminescence In Plasmonic Nanostructures And Ultrathin Inas Quantum Layers, Qigeng Yan

Theses and Dissertations

Due to the advanced focusing ability, characterization methods based on the electron-beam excitation have been broadly applied to investigate nanomaterials. Structural or compositional information is commonly acquired using electron microscopes. Moreover, taking advantage of the super spatial resolution of the focused electron beam, optical properties of nanomaterials can be also obtained. Herein, general concepts and processes of the interaction between electrons and materials are studied. Two specific optical nanomaterials, including plasmonic nanostructures and semiconductor quantum layers, are investigated by the cathodoluminescence (CL) measurement.

Surface plasmonic resonance can be generated when high-energy electrons strike the interface between the dielectric medium and ...


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim 2020 Air Force Institute of Technology

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection ...


Embedded-Atom-Method Modeling Of Alkali-Metal/Transition-Metal Interfaces, Jake D. Christensen 2020 Utah State University

Embedded-Atom-Method Modeling Of Alkali-Metal/Transition-Metal Interfaces, Jake D. Christensen

All Graduate Theses and Dissertations

Understanding the thermal properties of materials is essential to using those materials for technological advancement which can benefit civilization. For example, it has been proposed that essential components of tokamaks, devices which perform fusion, be made out of tungsten with a thin layer of lithium on the surface. To that end, this thesis seeks to calculate the thermal properties of a layer of alkali atoms, like lithium and sodium, on tungsten and molybdenum substrates. We use an Embedded Atom Method (EAM) model to perform our calculations. This type of model has been widely used to describe the interaction between atoms ...


Response Of The Mode Grüneisen Parameters With Anisotropic Compression: A Pressure And Temperature Dependent Raman Study Of Β-Sn, Jasmine K. Hinton, Christian Childs, Dean Smith, Paul B. Ellison, Keith V. Lawler, Ashkan Salamat 2020 University of Nevada, Las Vegas

Response Of The Mode Grüneisen Parameters With Anisotropic Compression: A Pressure And Temperature Dependent Raman Study Of Β-Sn, Jasmine K. Hinton, Christian Childs, Dean Smith, Paul B. Ellison, Keith V. Lawler, Ashkan Salamat

Physics & Astronomy Faculty Publications

The lattice dynamic response of body-centered tetragonal β−Sn (I41/amd) under high pressure and -temperature conditions is determined using experimental optical vibration modes. Raman scattering is used to map the phase stability region of β−Sn to perform mode Grüneisen analysis, and we demonstrate the necessity of an optical intensity calibration for Raman thermometry. The Grüneisen tensor is evaluated along a set of isotherms to address shortcomings of single-mode Grüneisen parameters with respect to anisotropic deformations of this tetragonal structured soft metal. The changes observed here in the Grüneisen tensor as a function of temperature are related to anharmonicity ...


Digital Commons powered by bepress