Assorted Kerosene-Based Nanofluid Across A Dual-Zone Vertical Annulus With Electroosmosis,
2023
The British University in Egypt
Assorted Kerosene-Based Nanofluid Across A Dual-Zone Vertical Annulus With Electroosmosis, Sara I. Abdelsalam, A. M. Alsharif, Y. Abd Elmaboud, A. I. Abdellateef
Basic Science Engineering
The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids through a porous medium in vertical annular microtubes. The inner region (Region I) is filled with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid is flowing in the second region (Region II). The chosen nanofluid is kerosene-based and the nanoparticles (Fe3O4-TiO2) are of a spherical shape. A strong zeta potential is taken into account and the electroosmotic velocity in the two layers is considered too. The annular microtubes are subjected to an external magnetic field and an electric field. The linked nonlinear …
Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method,
2023
Mississippi State University
Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method, William Paul England
Theses and Dissertations
This work presents implementation of a hybridized discontinuous Galerkin (DG) method for robust simulation of the hypersonic aerothermoelastic multiphysics system. Simulation of hypersonic vehicles requires accurate resolution of complex multiphysics interactions including the effects of high-speed turbulent flow, extreme heating, and vehicle deformation due to considerable pressure loads and thermal stresses. However, the state-of-the-art procedures for hypersonic aerothermoelasticity are comprised of low-fidelity approaches and partitioned coupling schemes. These approaches preclude robust design and analysis of hypersonic vehicles for a number of reasons. First, low-fidelity approaches limit their application to simple geometries and lack the ability to capture small scale flow …
A Study Of Reciprocal Underwater Motion And Its Use In Algae Harvesting,
2023
William & Mary
A Study Of Reciprocal Underwater Motion And Its Use In Algae Harvesting, Marguerite Bright
Undergraduate Honors Theses
In 2009, many research groups at different companies and universities were funded by Statoil to study the use of algae as a potential biofuel. Combined with the Chesapeake Bay TMDL given by the EPA, a team at William & Mary and VIMS studied the growth and harvest of wild algae in the York River. This method also removed harmful nutrients such as nitrogen and phosphorus from the waterways. Other independent research projects stemmed from this. In 2014, a research team sought to commercialize and automate the IWAGS system, and found that a single oscillating blade was the most effective. This …
Sexual Dimorphism Of Glomerular Capillary Morphology In Rats,
2023
East Tennessee State University
Sexual Dimorphism Of Glomerular Capillary Morphology In Rats, Zackarias Coker
Undergraduate Honors Theses
Chronic kidney disease (CKD) progresses faster in males than females; however, the underlying mechanisms remain poorly understood. Sex differences in glomerular capillary morphology has been hypothesized to contribute, in part, to the increased susceptibility to hypertension-induced renal injury and CKD progression in males, but this has not been investigated. The goal of the present study was to assess glomerular capillary morphology in male vs. female rats with intact kidneys and after uninephrectomy (UNX). We hypothesized that glomerular capillary radii (RCAP) and length (LCAP) would be greater in male rats.
Male (n=4) and female (n=4) with intact …
The Magnetic Field Of Protostar-Disk-Outflow Systems,
2023
Western University
The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi
Electronic Thesis and Dissertation Repository
Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …
Practical Implementation Of The Immersed Interface Method With Triangular Meshes For 3d Rigid Solids In A Fluid Flow,
2023
Southern Methodist University
Practical Implementation Of The Immersed Interface Method With Triangular Meshes For 3d Rigid Solids In A Fluid Flow, Norah Hakami
Mathematics Theses and Dissertations
When employing the immersed interface method (IIM) to simulate a fluid flow around a moving rigid object, the immersed object can be replaced by a virtual fluid enclosed by singular forces on the interface between the real and virtual fluids. These forces represent the impact of the rigid motion on the fluid flow and cause jump discontinuities across the interface in the whole flow field. Then, the IIM resolves the fluid flow on a fixed computational domain by directly incorporating the jump conditions across the interface into numerical schemes. Previous development of the method is limited to simple smooth boundaries. …
Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions,
2023
Bucknell University
Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur
Faculty Journal Articles
Many open-channel turbulent flow studies have been focused on highly constrained conditions. Thus, it is rather conventional to note such flows as being fully developed, fully turbulent, and unaffected by sidewalls and free surface disturbances. However, many real-life flow phenomena in natural water bodies and artificially installed drain channels are not as ideal. This work is aimed at studying some of these unconstrained conditions. This is achieved by using particle image velocimetry measurements of a developing turbulent open-channel flow over a smooth wall. The tested flow effects are low values of the Reynolds number based on the momentum thickness Re …
Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations,
2023
Naval Surface Warfare Center
Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal
Mechanical & Aerospace Engineering Faculty Publications
This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …
Innovations In Drop Shape Analysis Using Deep Learning And Solving The Young-Laplace Equation For An Axisymmetric Pendant Drop,
2023
Virginia Commonwealth University
Innovations In Drop Shape Analysis Using Deep Learning And Solving The Young-Laplace Equation For An Axisymmetric Pendant Drop, Andres P. Hyer
Theses and Dissertations
Axisymmetric Drop Shape Analysis (ADSA) is a technique commonly used to determine surface or interfacial tension. Applications of traditional ASDA methods to process analytical technologies are limited by computational speed and image quality. Here, we address these limitations using a novel machine learning approach to analysis. With a convolutional neural network (CNN), we were able to achieve an experimental fit precision of (+/-) 0.122 mN/m in predicting the surface tension of drop images at a rate of 1.5 ms^-1 versus 7.7 s^-1, which is more than 5,000 times faster than the traditional method. The results are validated on real images …
Modeling Self-Diffusiophoretic Janus Particles In Fluid,
2023
Harvey Mudd College
Modeling Self-Diffusiophoretic Janus Particles In Fluid, Kausik Das
HMC Senior Theses
We explore spherical Janus particles in which a chemical reaction occurs on one face, depleting a substrate in the suspending fluid, while no reaction occurs on the other face. The steady state concentration field is governed by Laplace’s equation with mixed boundary conditions. We use the collocation method to obtain numerical solutions to the equation in spherical coordinates. The asymmetry of the reaction gives rise to a slip velocity that causes the particle to move spontaneously in the fluid through a process known as self-diffusiophoresis. Using the Lorentz reciprocal theorem, we obtain the swimming velocity of the particle. We extend …
Using Computational Fluid Dynamics And Optical Sensor Technology To Scale Cell Culture Platforms,
2023
Claremont Colleges
Using Computational Fluid Dynamics And Optical Sensor Technology To Scale Cell Culture Platforms, Mandar Makwana
KGI Theses and Dissertations
Different cell culture vessels ranging from micro scale to laboratory scale to commercial scale play critical role in upstream process development for biologics manufacturing. Based on the mode of operation, cell culture vessels have different hydrodynamic environments, making it challenging to scale. Integrated approaches using computational tools supported by experimental studies can overcome these challenges. Computational Fluid Dynamics (CFD) is one such tool that can simulate hydrodynamics within the cell culture vessels and can provide insights at macro and micro-scale. Accuracy of a CFD model significantly depends on the fluid model and assumptions. Traditionally, simple two-equation fluid models were developed …
Fabrication And Investigation Of Microfluidic Devices That Produce Non-Linear Chemical Gradients,
2023
Georgia Southern University
Fabrication And Investigation Of Microfluidic Devices That Produce Non-Linear Chemical Gradients, Elijah L. Waters
Electronic Theses and Dissertations
Investigation of cell chemotaxis requires controlled chemical gradients. We investigated microfluidic devices that could enhance small populations' cell assays because of their ability to generate various chemical gradients. Our five designs generate different chemical concentration landscapes that we can easily convert into tools to study cell response to growth factors. Gradient landscapes occurred by splitting and mixing two input fluid concentrations using bifurcations, trifurcations, and Y-mixing junctions in three consecutive steps. Such fluid flow manipulations resulted in nine concentration streams entering a 0.54-mm-wide gradient chamber. The first design used a 1:1 ratio Y-mixer (unbiased) when blending two concentrations, resulting in …
An Analysis Of Tidal Mixing Front Dynamics And Frontal Biophysical Interaction In The Harpswell Sound Shelf Sea,
2023
Bowdoin College
An Analysis Of Tidal Mixing Front Dynamics And Frontal Biophysical Interaction In The Harpswell Sound Shelf Sea, Lemona Yingzhuo Niu
Honors Projects
Tidal Mixing Fronts (TMFs) are prominent hydrographic features of tidally energetic shallow shelf seas, representing the transition from mixed to stratified waters. These frontal boundaries often host enhanced phytoplankton primary productivity, as complete vertical mixing exhumes nutrients from depth to the light-lit surface. Existing observational programs for locating TMFs include infra-red satellite imagery of sea surface temperature (SST) and vertical profiling of temperature and density. However, challenges in observationally distinguishing mixed from mixing using only conservatively mixed hydrographic properties persist. A novel approach based on phytoplankton in-situ oxygen production response to light is proposed in this paper to distinguish stable …
Hydrodynamic Investigation Of The Discharge Of Complex Fluids From Dispensing Bottles Using Experimental And Computational Approaches,
2022
New Jersey Institute of Technology
Hydrodynamic Investigation Of The Discharge Of Complex Fluids From Dispensing Bottles Using Experimental And Computational Approaches, Baran Teoman
Dissertations
The discharge of non-Newtonian, complex fluids through orifices of industrial tanks, pipes, dispensers, or packaging containers is a ubiquitous but often problematic process because of the complex rheology of such fluids and the geometry of the containers. This, in turn, reduces the discharge rate and results in residual fluid left in the container, often referred to as heel. Heel formation is undesired in general, since it causes loss of valuable material, container fouling, and cross-contamination between batches. Heel may be of significant concern not only in industrial vessels but also in consumer packaging. Despite its relevance, the research in this …
Dynamic Rbi With Central Difference Method Approach In Calculation Of Uniform Corrosion Rate: A Casestudy On Gas Pipelines,
2022
Departemen Metalurgi dan Material, Fakultas Teknik, Universitas Indonesia, Depok 16424, Indonesia
Dynamic Rbi With Central Difference Method Approach In Calculation Of Uniform Corrosion Rate: A Casestudy On Gas Pipelines, M.Riefqi Dwi Alviansyah, Fernanda Hartoyo, Zahra Nadia Nurullia, Ari Kurniawan
Journal of Materials Exploration and Findings (JMEF)
The oil and gas industry generally uses a piping system to drain fluids. Even though the pipes used have been well designed, the use of pipes as a means of fluid transportation still provides the possibility of failure that can occur at any time, one of which is due to uniform corrosion. The use of standard Risk Based Inspection (RBI) according to the API RBI 581 document has been widely used to anticipate potential failures to pipe components. The use of standard RBI can reduce the risk of failure significantly. Because the standard RBI considers the component risk value to …
Investigation Of The Effect Of Corundum Layer On The Heat Transfer Of Sic Slab,
2022
University of Indonesia
Investigation Of The Effect Of Corundum Layer On The Heat Transfer Of Sic Slab, Sri Elsa Fatmi, Donanta Dhaneswara, Muhammad Anis, Ahmad Ashari
Journal of Materials Exploration and Findings (JMEF)
Aluminum is the most widely used metal in industry. Aluminum smelting is one of the important steps that needs to be carried out to produce products made of aluminum metal with good quality. In the process of smelting aluminum there are several problems that occur, one of which is the growth of corundum in Si C refractories which affects the quality of aluminum melt and the durability of Si C refractories. This research was conducted to see the heat transfer in Si C and the effect of the presence of Corundum on heat transfer. This research was carried out by …
(R1978) Heated Laminar Vertical Jet Of Psudoplastic Fluids-Against Gravity,
2022
Sarvajanik College of Engineering and Technology
(R1978) Heated Laminar Vertical Jet Of Psudoplastic Fluids-Against Gravity, Manisha Patel, M. G. Timol
Applications and Applied Mathematics: An International Journal (AAM)
A heated laminar jet of Pseudo-plastic fluid flowing vertically upwards from a long narrow slit into a region of the same fluid which is at a rest and at a uniform temperature is considered. The governing non-linear Partial differential equations (PDEs) for the defined flow problem are transformed into non-linear ordinary differential equations using the effective similarity technique-one parameter deductive group theory method. The obtained non-linear coupled Ordinary differential equations are solved and the results are presented by graphs. The effect of the Prandtl number and Grashof number on the velocity and temperature of the jet flow is discussed. Also, …
Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport,
2022
University of Tennessee, Knoxville
Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu
Doctoral Dissertations
The primary focus of this dissertation is to develop a next-generation, state-of-the-art neutrino kinetics capability that will be used in the context of the next-generation, state-of-the-art core-collapse supernova (CCSN) simulation frameworks \thornado\ and \FLASH.\index{CCSN} \thornado\ is a \textbf{t}oolkit for \textbf{h}igh-\textbf{or}der \textbf{n}eutrino-r\textbf{ad}iation hydr\textbf{o}dynamics, which is a collection of modules that can be incorporated into a simulation code/framework, such as \FLASH, together with a nuclear equation of state (EOS)\index{EOS} library, such as the \WeakLib\ EOS tables. The first part of this work extends the \WeakLib\ code to compute neutrino interaction rates from~\cite{Bruenn_1985} and produce corresponding opacity tables.\index{Bruenn 1985} The processes of emission, …
Numerical Simulation Of Electroosmotic Flow Of Viscoelastic Fluid In Microchannel,
2022
Old Dominion University
Numerical Simulation Of Electroosmotic Flow Of Viscoelastic Fluid In Microchannel, Jianyu Ji
Mechanical & Aerospace Engineering Theses & Dissertations
Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which often involve the use of viscoelastic non-Newtonian fluids. Due to the existence of the elastic effect, the viscoelastic EOF develops into chaotic flow under extremely low Reynolds numbers, which is known as elastic turbulence. The mechanism of elastic turbulence in electroosmotic flow remains unclear. Numerical simulation plays an important role in understanding the mechanisms of elastic turbulence. This dissertation is aimed to study the EOF of viscoelastic fluids in constriction microchannels under various direct current (DC) and alternating current (AC) electric fields. First, the EOF …
Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence,
2022
University of Tennessee, Knoxville
Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen
Doctoral Dissertations
Turbulence is ubiquitous in life —from biology to astrophysics. The best direct numeric simulations (DNS) have only been benchmarked against low resolution, time-averaged experimental configurations—partly because of limitations in computing power. With time, computing power has greatly increased, so there is need for higher quality data of turbulent flow. In this dissertation, we explore a solution that enables quantitative visualization measurement of the velocity field in liquid helium, which has the potential of breaking new ground for high Reynolds number turbulence research and model testing.
Our technique involves creation of clouds of molecular tracers using 3He-neutron absorption reaction in liquid …
