Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,192 Full-Text Articles 3,144 Authors 513,408 Downloads 113 Institutions

All Articles in Optics

Faceted Search

2,192 full-text articles. Page 1 of 83.

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors [U.S. Patent Us11366054b2], Hengky Chandrahalim, Michael T. Dela Cruz 2022 Air Force Institute of Technology

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors [U.S. Patent Us11366054b2], Hengky Chandrahalim, Michael T. Dela Cruz

Faculty Publications

An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor ...


Symmetries, Zero Modes And Light Transport In Non-Hermitian Photonics, Jose David Hernandez Rivero 2022 The Graduate Center, City University of New York

Symmetries, Zero Modes And Light Transport In Non-Hermitian Photonics, Jose David Hernandez Rivero

Dissertations, Theses, and Capstone Projects

We approach some fundamental aspects of photonic dissipative systems treated by a non-Hermitian theory. Inspired by the possibilities provided by some major non-Hermitian symmetries, we study systematically the properties of the novel pseudochirality, pseudo-anti-Hermiticity, and supersymmetry. We analyze other aspect of photonics, the zero mode, which has a profound connection to non-Hermitian physics. We propose a scheme to realize a zero mode that exists even in the absence of symmetries. Finally, we approach light transport in non-Hermitian photonic systems, where the introduction of gain and loss can modify drastically the propagation speed of wavepackets.


Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers 2022 California Polytechnic State University, San Luis Obispo

Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers

Electrical Engineering

This product is a photophoretic trapping system which allows varying focal lengths to test which focal lengths are possible for trapping toner particles. This system establishes that there exists a maximum trapping distance limitation and is the first time the effect of focal length is studied in a photophoretic trapping system. Increasing photophoretic trapping focal length is necessary for improving this technology as a 3D display. The 3D imaging technology is realized by dragging a microscopic (micrometer-scale) particles with a laser beam to trace an image. This technology can display fully colored and high-resolution 3D images visible from almost any ...


Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip [U.S. Patent Us11326970b2], Jeremiah C. Williams, Hengky Chandrahalim 2022 Air Force Institute of Technology

Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip [U.S. Patent Us11326970b2], Jeremiah C. Williams, Hengky Chandrahalim

Faculty Publications

A passive microscopic Fabry-Pérot Interferometer (FPI) pressure sensor includes an optical fiber and a three-dimensional microscopic optical enclosure. The three-dimensional microscopic optical enclosure includes tubular side walls having lateral pleated corrugations and attached to a cleaved tip of the optical fiber to receive a light signal. An optically reflecting end wall is distally engaged to the tubular side walls to enclose a trapped quantity of gas that longitudinally positions the optically reflecting end wall in relation to ambient air pressure, changing a distance traveled by a light signal reflected back through the optical fiber.


Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors [Us Patent Us11320596b2], Jeremiah C. Williams, Hengky Chandrahalim 2022 Air Force Institute of Technology

Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors [Us Patent Us11320596b2], Jeremiah C. Williams, Hengky Chandrahalim

Faculty Publications

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of the optical fighter using a two-photon polymerization process on a photosensitive polymer by a three-dimensional micromachining device. The three-dimensional microscopic optical structure having a hinged optical layer pivotally connected to a distal portion of a suspended structure. A reflective layer is deposited on a mirror surface of the hinged optical layer while in an open position. The hinged optical layer is subsequently positioned in the closed position to align the mirror surface to at least partially reflect a light signal back ...


Development Of A Vector Magnetometer Based On Electromagnetically Induced Transparency In 87rb Atomic Vapor, Alexander Toyryla 2022 William & Mary

Development Of A Vector Magnetometer Based On Electromagnetically Induced Transparency In 87rb Atomic Vapor, Alexander Toyryla

Undergraduate Honors Theses

We present progress towards the development of an atomic magnetometer capable of accurate scalar and vector magnetic field measurements with high sensitivity and no need for external calibration. The proposed device will use the interaction between a bi-chromatic laser field and rubidium vapor to derive magnetic field magnitude and direction from measured amplitudes of Electromagnetically Induced Transparency (EIT) resonances. Since the proposed method requires precision control of light polarization, we observe the performance capabilities of a liquid crystal device to dynamically rotate the polarization of the laser field. Another goal in this project is to establish a polarization locking mechanism ...


Alkali Linewidths Under High Temperatures And Pressures Of 3he, Michael Parker 2022 William & Mary

Alkali Linewidths Under High Temperatures And Pressures Of 3he, Michael Parker

Undergraduate Honors Theses

Current research at Thomas Jefferson National Accelerator Facility is being conducted to study the spin structure of the neutron through collisions with polarized 3He nuclei. The helium is contained in high pressure glass vessels (called cells) along with nitrogen, rubidium, and potassium. To deduce the spin structure from collisions, we need to know the precise number density of 3He in the cell. The process of polarizing 3He through spin-exchange optical pumping requires nitrogen and alkali metal. We can use the absorption linewidths of rubidium and potassium to more accurately determine the density of helium. Throughout my research, I collected absorption ...


Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar 2022 Clemson University

Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar

All Dissertations

This dissertation uses porous silicon as a material platform to explore novel optical effects in three domains: (i) It studies dispersion engineering in integrated waveguides to achieve high performance group index sensing. With proper design parameters, the sensor waveguides can theoretically achieve 6 times larger group index shift compared to the actual bulk effective refractive index shift. We demonstrate the guided mode confinement factor to be a key parameter in design and implementation of these waveguides. (ii) It explores multicolor laser illumination to experimentally demonstrate perceptually enhanced colorimetric sensing, overcoming the limitations faced by many contemporary colorimetric sensors. Our technique ...


Experimental Investigation Of All-Optical Production Of Metastable Krypton, Joshua Carl Frechem 2022 Old Dominion University

Experimental Investigation Of All-Optical Production Of Metastable Krypton, Joshua Carl Frechem

Physics Theses & Dissertations

Metastable production of noble gases requires significant energy due to their filled valence shells. These transitions from the ground state are in the vacuum ultraviolet and extreme ultraviolet, which are relatively inaccessible to lasers. This necessitates the use of either electron/ion bombardment via inefficient glow discharges or the use of high-power lasers and nonlinear processes. The all-optical production efficiency using these high-power lasers promises to be orders of magnitude higher than glow discharges, but far more costly. This work looks to improve all-optical production of metastable krypton (Kr*) through the use of a commercially available vacuum ultraviolet lamp with ...


Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh J. Byrne, Christine M. O’Connor, James Curtin, Furong Tian 2022 Technological University Dublin

Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh J. Byrne, Christine M. O’Connor, James Curtin, Furong Tian

Articles

Mycotoxins are secondary metabolic products of fungi. They are poisonous, carcinogenic, and mutagenic in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even death. Rapid, simple and low-cost methods of detection of mycotoxins are of immense importance and in great demand in the food and beverage industry, as well as in agriculture and environmental monitoring, and, for this purpose, lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety and environmental monitoring. The literature to date describing the development of ICSTs for the detection of different types of mycotoxins using ...


Advanced Communication And Sensing Protocols Using Twisted Light And Engineered Quantum Statistics, Michelle L. Lollie 2022 Louisiana State University and Agricultural and Mechanical College

Advanced Communication And Sensing Protocols Using Twisted Light And Engineered Quantum Statistics, Michelle L. Lollie

LSU Doctoral Dissertations

Advanced performance of modern technology at a fundamental physical level is driving new innovations in communication, sensing capability, and information processing. Key to this improvement is the ability to harness the power of physical phenomena at the quantum mechanical level, where light and light-matter interactions produce technological advancement not realizable by classical means. Theoretical investigation into quantum computing, sensing capability beyond classical limits, and quantum information has prompted experimental work to bring state-of-the-art quantum systems to the forefront for commercial use. This dissertation contributes to the latter portion of the work. A set of preliminaries is included highlighting pertinent physical ...


Physics 516: Electromagnetic Phenomena (Spring 2022), Philip C. Nelson 2022 University of Pennsylvania

Physics 516: Electromagnetic Phenomena (Spring 2022), Philip C. Nelson

Department of Physics Papers

These course notes are made publicly available in the hope that they will be useful. All reports of errata will be gratefully received. I will also be glad to hear from anyone who reads them, whether or not you find errors: pcn@upenn.edu.


Utilization And Efficient Computation Of Polarization Factor Q For Fast, Accurate Brdf Modeling, Samuel D. Butler, Michael A. Marciniak 2022 Air Force Institute of Technology

Utilization And Efficient Computation Of Polarization Factor Q For Fast, Accurate Brdf Modeling, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

The Bidirectional Reflectance Distribution Function (BRDF) is of substantial use in remote sensing, scene generation, and computer graphics, to describe optical scatter off realistic surfaces. This paper begins by summarizing our prior work in relating wave optics and geometric optics models, culminating with the Modified Cook-Torrance (MCT) model. The MCT model is evaluated here against aluminum, Infragold, and silver paint at various wavelengths in the IR. In each case, the MCT model is shown to outperform a standard microfacet model. Then, this paper shows a non-trivial method of computing the primary new term, the polarization factor Q. This optimization requires ...


Charge Transport And Spin Dynamics Of Color Centers In Diamond, Damon Daw 2022 The Graduate Center, City University of New York

Charge Transport And Spin Dynamics Of Color Centers In Diamond, Damon Daw

Dissertations, Theses, and Capstone Projects

Solid state defects in diamond are promising candidates for room temperature quantum information processors (1, 3, 5). Chief among these defects is the nitrogen vacancy center (‘NV center’ or ‘NV’). The NV has long coherence times (at 300K) and its state is easily initialized, manipulated and read out (5). However, the outstanding issue of entangling NV centers in a scalable fashion, at room temperature remains a challenge. This thesis presents experimental and theoretical work aimed at achieving this goal by developing the ‘flying qubit’ framework in (1). This method for remote entanglement utilizes a charge carrier (initialized into a definite ...


Artificial Intelligence And Machine Learning In Optical Information Processing: Introduction To The Feature Issue, Khan Iftekharuddin, Chrysanthe Preza, Abdul Ahad S. Awwal, Michael E. Zelinski 2022 Old Dominion University

Artificial Intelligence And Machine Learning In Optical Information Processing: Introduction To The Feature Issue, Khan Iftekharuddin, Chrysanthe Preza, Abdul Ahad S. Awwal, Michael E. Zelinski

Electrical & Computer Engineering Faculty Publications

This special feature issue covers the intersection of topical areas in artificial intelligence (AI)/machine learning (ML) and optics. The papers broadly span the current state-of-the-art advances in areas including image recognition, signal and image processing, machine inspection/vision and automotive as well as areas of traditional optical sensing, interferometry and imaging.


Vertical Artifacts In High-Resolution Worldview-2 And Worldview-3 Satellite Imagery Of Aquatic Systems, Megan M. Coffer, Peter J. Whitman, Blake A. Schaeffer, Victoria Hill, Richard C. Zimmerman, Wilson B. Salls, Marie C. Lebrasse, David D. Graybill 2022 Old Dominion University

Vertical Artifacts In High-Resolution Worldview-2 And Worldview-3 Satellite Imagery Of Aquatic Systems, Megan M. Coffer, Peter J. Whitman, Blake A. Schaeffer, Victoria Hill, Richard C. Zimmerman, Wilson B. Salls, Marie C. Lebrasse, David D. Graybill

OES Faculty Publications

Satellite image artefacts are features that appear in an image but not in the original imaged object and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features oriented in the along-track direction of an image system and can present as either banding or striping; banding are features with a consistent width, and striping are features with inconsistent widths. This study used high-resolution data from DigitalGlobeʻs (now Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017. This study investigated the impact of vertical artefacts on both at-sensor radiance and a spectral index for ...


Enhanced Study Of Complex Systems By Unveiling Hidden Symmetries With Dynamical Visibility, Nhat Vu Minh Nguyen 2022 Eastern Washington University

Enhanced Study Of Complex Systems By Unveiling Hidden Symmetries With Dynamical Visibility, Nhat Vu Minh Nguyen

2022 Symposium

One of the great challenges in complex and chaotic dynamics is to reveal its deterministic structures. These temporal dynamical structures are sometimes a consequence of hidden symmetries. Detecting and understanding them can allow the study of complex systems even without knowing the full underlying mathematical description of the system. Here we introduce a new technique, called Dynamical Visibility, that quantifies temporal correlations of the dynamics based upon some symmetry conditions. This visibility measures the departure of the dynamics from internal symmetries. We apply this technique to well-known chaotic systems, such as the logistic map and the circle map, as well ...


Quantitative Raman Analysis Of Carotenoid Protein Complexes In Aqueous Solution, Joy Udensi, Ekaterina Loskutova, James Loughman, Hugh Byrne 2022 Technological University Dublin

Quantitative Raman Analysis Of Carotenoid Protein Complexes In Aqueous Solution, Joy Udensi, Ekaterina Loskutova, James Loughman, Hugh Byrne

Datasets

Carotenoids are naturally abundant fat-soluble pigmented compounds, with dietary, antioxidant and vision protection advantages. The dietary carotenoids, Beta Carotene, Lutein and Zeaxanthin, complexed with in bovine serum albumin (BSA) in aqueous solution, were explored using Raman spectroscopy to differentiate and quantify their spectral signatures. UV visible absorption spectroscopy was employed to confirm the linearity of responses over the concentration range employed (0.05-1mg/ml) and, of the 4 source wavelengths, 785nm, 660nm, 532nm, 473nm, 532nm was chosen to provide the optimal response. After preprocessing to remove water and BSA contributions, and correct for self-absorption, a partial least squares model with ...


Characterization And Coherent Spin Selective Manipulation Of Quantum Dot Energy Levels, Tristan Anthony Wilkinson 2022 West Virginia University

Characterization And Coherent Spin Selective Manipulation Of Quantum Dot Energy Levels, Tristan Anthony Wilkinson

Graduate Theses, Dissertations, and Problem Reports

Semiconductor quantum dots (QDs) are promising candidates to fulfill a wide range of applications in real-world quantum computing, communication, and networks. Their excellent optical properties such as high brightness, single-photon purity, and narrow linewidths show potential utility in many areas. In order to realize long term goals of integration into complex and scalable quantum information systems, many current challenges must be overcome. One of these challenges is accomplishment of all necessary computing operations within a QD, which might be enabled by coherent manipulation of single QD energy level structures. In the realm of scalability for quantum devices, a way to ...


Hot-Carrier Dynamics And Transport Mechanisms In Inas/Alassb Multiple Quantum Wells, Herath Pathiranage Janaka Chathuranga Piyathilaka 2022 West Virginia University

Hot-Carrier Dynamics And Transport Mechanisms In Inas/Alassb Multiple Quantum Wells, Herath Pathiranage Janaka Chathuranga Piyathilaka

Graduate Theses, Dissertations, and Problem Reports

Semiconductor photovoltaics convert light into electricity through the extraction of photo-excited charge carriers. Among the most important parameters for a photovoltaic cell are good optical absorption in the desired region of the electromagnetic spectrum, and sufficient excited-state lifetimes and mobilities of the photocarriers to allow for charge separation and extraction before recombination. For solar cell applications there are significant challenges to overcome to improve the efficiency of the light-to-electricity conversion. The cells are most commonly made of silicon, which has a nearly perfect bandgap for absorbing the most solar radiation, an indirect bandgap to give a long photocarrier lifetime and ...


Digital Commons powered by bepress