Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,352 Full-Text Articles 2,641 Authors 387,835 Downloads 132 Institutions

All Articles in Quantum Physics

Faceted Search

1,352 full-text articles. Page 1 of 55.

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin 2024 The University of Texas Rio Grande Valley

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Comment On “Photons Can Tell ‘Contradictory’ Answer About Where They Have Been”, Gregory Reznick, Carlotta Versmold, Jan Dziewior, Florian Huber, Harald Weinfurter, Justin Dressel, Lev Vaidman 2024 Tel-Aviv University

Comment On “Photons Can Tell ‘Contradictory’ Answer About Where They Have Been”, Gregory Reznick, Carlotta Versmold, Jan Dziewior, Florian Huber, Harald Weinfurter, Justin Dressel, Lev Vaidman

Mathematics, Physics, and Computer Science Faculty Articles and Research

Yuan and Feng (Eur. Phys. J. Plus 138:70, 2023) recently proposed a modification of the nested Mach–Zehnder interferometer experiment performed by Danan et al. (Phys. Rev. Lett. 111:240402, 2013) and argued that photons give “contradictory” answers about where they have been, when traces are locally imprinted on them in different ways. They concluded that their results are comprehensible from what they call the “three-path interference viewpoint,” but difficult to explain from the “discontinuous trajectory” viewpoint advocated by Danan et al. We argue that the weak trace approach (the basis of the “discontinuous trajectory” viewpoint) provides a consistent explanation of the …


Improving The Proof Of The Born Rule Using A Physical Requirement On The Dynamics Of Quantum Particles, Yakir Aharonov, Tomer Shushi 2024 Chapman University

Improving The Proof Of The Born Rule Using A Physical Requirement On The Dynamics Of Quantum Particles, Yakir Aharonov, Tomer Shushi

Mathematics, Physics, and Computer Science Faculty Articles and Research

We propose a complete proof of the Born rule using an additional postulate stating that for a short enough time Δt between two measurements, a property of a particle will keep its values fixed. This dynamical postulate allows us to produce the Born rule in its explicit form by improving the result given in [1]. While the proposed postulate is still not part of the quantum mechanics postulates, every experiment obeys it, and it cannot be deduced using the standard postulates of quantum mechanics.


Gaussian Rbf Kernels Via Fock Spaces: Quaternionic And Several Complex Variables Settings, Antonino De Martino, Kamal Diki 2024 Politecnico di Milano

Gaussian Rbf Kernels Via Fock Spaces: Quaternionic And Several Complex Variables Settings, Antonino De Martino, Kamal Diki

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper, we study two extensions of the complex-valued Gaussian radial basis function (RBF) kernel and discuss their connections with Fock spaces in two different settings. First, we introduce the quaternionic Gaussian RBF kernel constructed using the theory of slice hyperholomorphic functions. Then, we consider the case of Gaussian RBF kernels in several complex variables.


Probing Central Spin Decoherence Dynamics Of Electronic Point Defects In Diamond And Silicon, Ethan Que Williams 2024 Dartmouth College

Probing Central Spin Decoherence Dynamics Of Electronic Point Defects In Diamond And Silicon, Ethan Que Williams

Dartmouth College Ph.D Dissertations

Electron spins of point defects in diamond and silicon can exhibit long coherence times, making them attractive platforms for the physical implementation of qubits for quantum sensing and quantum computing. To realize these technologies, it is essential to understand the mechanisms that limit their coherence. Decoherence of these systems is well described by the central spin model, wherein the central electron spin weakly interacts with numerous electron and nuclear spins in its environment. The dynamics of the resultant dephasing can be probed with pulse electron paramagnetic resonance (pEPR) experiments.

Using a 2.5 GHz pEPR spectrometer built in-house, we performed multi-pulse …


Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand 2024 The Graduate Center, City University of New York

Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand

Dissertations, Theses, and Capstone Projects

Monolayers Transition metal dichalcogenides (TMDs) have attracted much attention in recent years due to their promising optical and electronic properties for applications in optoelectronic devices. The rich multivalley band structure and sizable spin-orbit coupling in monolayer TMDs result in several optically bright and dark excitonic states with different spin and valley configurations. In the proposed works, we have developed experimental techniques and theoretical models to study the dynamics, interactions, and transport of both dark and bright excitons.

In W-based monolayers of TMDs, the momentum dark exciton cannot typically recombine optically, but they represent the lowest excitonic state of the system …


Programmable Heisenberg Interactions Between Floquet Qubits, Long B. Nguyen, Yosep Kim, Akel Hashim, Noah Goss, Brian Marinelli, Bibek Bhandari, Debmalya Das, Ravi K. Naik, John Mark Kreikebaum, Andrew N. Jordan, David I. Santiago, Irfan Siddiqi 2024 Lawrence Berkeley National Laboratory

Programmable Heisenberg Interactions Between Floquet Qubits, Long B. Nguyen, Yosep Kim, Akel Hashim, Noah Goss, Brian Marinelli, Bibek Bhandari, Debmalya Das, Ravi K. Naik, John Mark Kreikebaum, Andrew N. Jordan, David I. Santiago, Irfan Siddiqi

Mathematics, Physics, and Computer Science Faculty Articles and Research

The trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, quantum architectures are often designed to achieve high coherence at the expense of tunability. Many current qubit designs have fixed energy levels and consequently limited types of controllable interactions. Here by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model can act as the primitive for an expressive set of quantum operations, but is also the basis for quantum simulations of spin systems. To illustrate …


What Does ‘(Non)-Absoluteness Of Observed Events’ Mean?, Emily Adlam 2024 Chapman University

What Does ‘(Non)-Absoluteness Of Observed Events’ Mean?, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

Recently there have emerged an assortment of theorems relating to the ‘absoluteness of emerged events,’ and these results have sometimes been used to argue that quantum mechanics may involve some kind of metaphysically radical non-absoluteness, such as relationalism or perspectivalism. However, in our view a close examination of these theorems fails to convincingly support such possibilities. In this paper we argue that the Wigner’s friend paradox, the theorem of Bong et al and the theorem of Lawrence et al are all best understood as demonstrating that if quantum mechanics is universal, and if certain auxiliary assumptions hold, then the world …


Questioning Reality: The Progressive Development Of Modern Physics, Joshua Lancman 2024 Golda Och Academy

Questioning Reality: The Progressive Development Of Modern Physics, Joshua Lancman

STEM for Success Showcase

Humanity has a tendency to divide time. The past is distinct from the present which is entirely separate from the future. In supposedly 20-20 vision history is neatly divided into different sections, distinct eras with sharp lines between them. What is present and in the future is always modern. What is past is something else with another name.

Yet time is not divided so neatly. We know this living through it: years and decades blend into one another in a non-uniform progression. To divide human history into separate eras is a necessary simplification, as it helps to ascribe order onto …


Existence Of Well-Defined Pointer Observable Selects Tensor Product Factorizations Of Quantum Systems, Brian Lee 2024 Claremont Colleges

Existence Of Well-Defined Pointer Observable Selects Tensor Product Factorizations Of Quantum Systems, Brian Lee

CMC Senior Theses

In the decoherence account of quantum mechanics, a choice of particular tensor product structure (a particular partition of system into subsystems) is assumed. We explore whether it is possible to relax this arbitrary choice by requiring that a valid tensor product structure admits a quasi-classical description. Such tensor product structures are said to be quasi-classical or decoherence-selected tensor product structures. This project generalizes a 2-qubit quasi-classical tensor product structure selection algorithm to an n-qubit selection algorithm, which allows us to, for the first time, consider the relationship between decoherence-selected tensor product structures and locality-selected tensor product structures. To generalize the …


Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, TJ Hammond 2024 Manipal Institute of Technology, Manipal University

Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond

Physics Publications

Kerr instability can be exploited to amplify visible, near-infrared, and midinfrared ultrashort pulses. We use the results of Kerr instability amplification theory to inform our simulations amplifying few-cycle pulses. We show that the amplification angle dependence is simplified to the phase-matching condition of four-wave mixing when the intense pump is considered. Seeding with few-cycle pulses near the pump leads to broadband amplification without spatial chirp, while longer pulses undergo compression through amplification. Pumping in the midinfrared leads to multioctave spanning amplified pulses with single-cycle duration not previously predicted. We discuss limitations of the amplification process and optimizing pump and seed …


Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson 2023 University of New Mexico

Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson

Physics & Astronomy ETDs

Our first focus is on few-hole quantum dots in germanium. We use discontinous Galerkin methods to discretize and solve the equations of a highly detailed k·p model that describes these systems, enabling a better understanding of experimental magnetospectroscopy results. We confirm the expected anisotropy of single-hole g-factors and describe mechanisms by which different orbital states have different g-factors. Building on this, we show that the g-factors in Ge holes are suciently sensitive to details of the device electrostatics that magnetospectroscopy data can be used to make a prediction of the underlying confinement potential. The second focus is on designing quantum …


Formulation Of Causality-Preserving Quantum Time Of Arrival Theory, Denny Lane B. Sombillo, Neris I. Sombillo 2023 National Institute of Physics, College of Science, University of the Philippines, Diliman

Formulation Of Causality-Preserving Quantum Time Of Arrival Theory, Denny Lane B. Sombillo, Neris I. Sombillo

Physics Faculty Publications

We revisit the quantum correction to the classical time of arrival to address the unphysical instantaneous arrival in the limit of zero initial momentum. In this study, we show that the vanishing of arrival time is due to the contamination of the causality-violating component of the initial wave packet. Motivated by this observation, we propose to update the temporal collapse mechanism in Galapon (2009) [18] to incorporate the removal of causality-violating spectra of the arrival time operator. We found that the quantum correction to the classical arrival time is still observed. Thus, our analysis validates that the correction is an …


Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa 2023 University of Tennessee, Knoxville

Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa

Doctoral Dissertations

In the burgeoning field of quantum machine learning, the fusion of quantum computing and machine learning methodologies has sparked immense interest, particularly with the emergence of noisy intermediate-scale quantum (NISQ) devices. These devices hold the promise of achieving quantum advantage, but they grapple with limitations like constrained qubit counts, limited connectivity, operational noise, and a restricted set of operations. These challenges necessitate a strategic and deliberate approach to crafting effective quantum machine learning algorithms.

This dissertation revolves around an exploration of these challenges, presenting innovative strategies that tailor quantum algorithms and processes to seamlessly integrate with commercial quantum platforms. A …


Weak Measurements And Quantum-To-Classical Transitions In Free Electron–Photon Interactions, Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov 2023 ShanghaiTech University

Weak Measurements And Quantum-To-Classical Transitions In Free Electron–Photon Interactions, Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov

Mathematics, Physics, and Computer Science Faculty Articles and Research

How does the quantum-to-classical transition of measurement occur? This question is vital for both foundations and applications of quantum mechanics. Here, we develop a new measurement-based framework for characterizing the classical and quantum free electron–photon interactions and then experimentally test it. We first analyze the transition from projective to weak measurement in generic light–matter interactions and show that any classical electron-laserbeam interaction can be represented as an outcome of weak measurement. In particular, the appearance of classical point-particle acceleration is an example of an amplified weak value resulting from weak measurement. A universal factor, exp(-Γ2/2) , quantifies the …


Contributions Of Tunneling In 8Π-6Π Electrocyclic Cascade Reactions Of Bicyclo[4.2.0]Octa-2,4-Diene Moieties, Ishika Jain, Claire Castro, William L. Karney 2023 University of San Francisco

Contributions Of Tunneling In 8Π-6Π Electrocyclic Cascade Reactions Of Bicyclo[4.2.0]Octa-2,4-Diene Moieties, Ishika Jain, Claire Castro, William L. Karney

Featured Student Work

Six-electron electrocyclic reactions usually require relatively high temperatures; however recent research has shown that such reactions can occur at significantly lower temperatures in biosynthetic and biomimetic pathways. Pathways resulting in bicyclo[4.2.0]octa-2,4-diene moieties arise from thermally allowed 8π-6π electrocyclization cascade reactions of 1,3,5,7-octatetraenes, as in the biosynthesis of endiandric acids, elysiapyrones, and numerous other natural products. We report multidimensional tunneling calculations to explore the possible contribution of heavy-atom tunneling (e.g. by carbon) to biosynthetic pathways and biomimetic syntheses, and thus to provide a more complete picture of biochemical kinetics. M06-2X/cc-pVDZ calculations on the 8π-6π cascade cyclizations of methylated octatetraene model systems …


Electromagnetically Induced Transparency In An Ensemble Of Three-Level Lambda Systems, Sara Moezzi 2023 University of Windsor

Electromagnetically Induced Transparency In An Ensemble Of Three-Level Lambda Systems, Sara Moezzi

Electronic Theses and Dissertations

Electromagnetically induced transparency (EIT) is a technique whereby a medium otherwise opaque to radiation of a particular frequency can be made transparent at that frequency by applying radiation of an appropriate second frequency. EIT demonstrates numerous current applications, with a notable focus on its utilization within the field of quantum information. Given the absence of an established theory of EIT in atomic ensembles, my primary focus is to develop theoretical models that describe both the quantum mechanical origin of EIT as well as the effect of interatomic interactions. In this thesis, I present two theoretical models of EIT in an …


Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge 2023 The Graduate Center, City University of New York

Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge

Dissertations, Theses, and Capstone Projects

Individual quantum systems in semiconductors are currently the most sought-after platform for applications in quantum science. Most notably, the nitrogen-vacancy (NV) center in diamond features a defect deep within the electronic bandgap, making it amenable for precise manipulation to help pave the way to perform fundamental quantum physics experimentation. The NV center also offers long coherence times and versatile spin-dependent fluorescent properties, making it an ideal candidate for a nanoscale magnetometer. Furthermore, multi-color excitation offers deterministic charge state manipulation. While ambient operation has been key to their appeal, bringing NVs to cryogenic conditions opens new opportunities for alternate forms of …


Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh 2023 The Graduate Center, City University of New York

Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in solid state systems is an intriguing process that allows one to exploit the advantages of both light and matter. In this context, microcavities have become essential platforms for studying the strong coupling regime, where hybrid light-matter states known as exciton-polaritons form, leading to enhanced light matter interaction, modified material properties, and novel quantum phenomena. In this thesis, we explore the phenomenology of exciton-polaritons in strained TMD microcavities, 2D perovskites, fluorescent proteins and organic dyes encompassing thermalization, polariton lasing, and the observation of nonlinear effects.

Transition metal dichalcogenides (TMDs) have emerged as a remarkable class of two- …


Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens 2023 Technische Universität Berlin

Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens

Mathematics, Physics, and Computer Science Faculty Articles and Research

Interference phenomena are often claimed to resist classical explanation. However, such claims are undermined by the fact that the specific aspects of the phenomenology upon which they are based can in fact be reproduced in a noncontextual ontological model [Catani et al., arXiv:2111.13727]. This raises the question of what other aspects of the phenomenology of interference do in fact resist classical explanation. We answer this question by demonstrating that the most basic quantum wave-particle duality relation, which expresses the precise tradeoff between path distinguishability and fringe visibility, cannot be reproduced in any noncontextual model. We do this by …


Digital Commons powered by bepress