Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical,
2023
Technische Universität Berlin
Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens
Mathematics, Physics, and Computer Science Faculty Articles and Research
Interference phenomena are often claimed to resist classical explanation. However, such claims are undermined by the fact that the specific aspects of the phenomenology upon which they are based can in fact be reproduced in a noncontextual ontological model [Catani et al., arXiv:2111.13727]. This raises the question of what other aspects of the phenomenology of interference do in fact resist classical explanation. We answer this question by demonstrating that the most basic quantum wave-particle duality relation, which expresses the precise tradeoff between path distinguishability and fringe visibility, cannot be reproduced in any noncontextual model. We do this by …
Design And Fabrication Of A Trapped Ion Quantum Computing Testbed,
2023
University of Massachusetts Amherst
Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron
Masters Theses
Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …
Entangled Photon Anti-Correlations Are Evident From Classical Electromagnetism,
2023
San José State University
Entangled Photon Anti-Correlations Are Evident From Classical Electromagnetism, Ken Wharton, Emily Adlam
Mathematics, Physics, and Computer Science Faculty Articles and Research
For any experiment with two entangled photons, some joint measurement outcomes can have zero probability for a precise choice of basis. These perfect anti-correlations would seem to be a purely quantum phenomenon. It is, therefore, surprising that these very anti-correlations are also evident when the input to the same experiment is analyzed via classical electromagnetic theory. Demonstrating this quantum–classical connection for arbitrary two-photon states and analyzing why it is successful motivates alternative perspectives concerning entanglement, the path integral, and other topics in quantum foundations.
Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes,
2023
Louisiana State University at Baton Rouge
Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas
LSU Doctoral Dissertations
The Hawking effect is an exciting physical prediction lying at the intersection of the two most successful theories of the past century, namely, Einstein’s theory of relativity and quantum mechanics. In this dissertation, we put special emphasis on the quantum aspects of the Hawking process encoded in the entanglement shared by the emitted fluxes of created quanta. In particular, we employ sharp tools from quantum information theory to quantify the entanglement produced by the Hawking effect throughout the black hole evaporation process. Our framework allows us to extend previous calculations of entanglement to a larger set of cases, for instance, …
Adaptive Quantum Information Processing In Non-Equilibrium Environments,
2023
Louisiana State University
Adaptive Quantum Information Processing In Non-Equilibrium Environments, Arshag Danageozian
LSU Doctoral Dissertations
Solid state and condensed matter systems, such as diamond impurities, superconductors, quantum dots, and ion traps, constitute important physical platforms for various applications in quantum information processing (QIP). However, it has consistently been shown that all such modern platforms suffer from non-equilibrium behavior on timescales that are relevant for many important QIP tasks. The causes range from intrinsic non-equilibrium dynamics (e.g. in diamond) to the presence of various impurities with their own internal dynamics (e.g. in superconductors and quantum dots) or variations in the control fields used to stabilize the quantum matter (e.g. in ion traps). When reserving degrees of …
Aharonov–Bohm Effect With An Effective Complex-Valued Vector Potential,
2023
University of Bristol
Aharonov–Bohm Effect With An Effective Complex-Valued Vector Potential, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell
Mathematics, Physics, and Computer Science Faculty Articles and Research
The interaction between a quantum charge and a dynamic source of a magnetic field is considered in the Aharonov–Bohm (AB) scenario. It is shown that, in weak interactions with a post-selection of the source, the effective vector potential is, generally, complex-valued. This leads to new experimental protocols to detect the AB phase before the source is fully encircled. While this does not necessarily change the nonlocal status of the AB effect, it brings new insights into it. Moreover, we discuss how these results might have consequences for the correspondence principle, making complex vector potentials relevant to the study of classical …
Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics,
2023
Dartmouth College
Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn
Dartmouth College Ph.D Dissertations
Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …
Making The Transition To Post-Quantum Cryptography,
2023
Cleveland State University
Making The Transition To Post-Quantum Cryptography, J. Simon Richard
The Downtown Review
Without intervention, quantum computing could threaten the security of a large portion of our internet in the near future. However, solutions exist. This paper, which is intended for a general audience, provides a wider context for our current state of quantum-preparedness amid the transition from classical cryptosystems to post-quantum cryptosystems—cryptographic algorithms that can resist the attacks of quantum computers. It will also submit a possible way forward inspired by the actions taken around the globe to prevent the millennium (or Y2K) bug.
Electron And Other Quarks As Particles Made Of Elementary Particles Of Charge E/3 And Mass Me/6,
2023
Suffolk University
Electron And Other Quarks As Particles Made Of Elementary Particles Of Charge E/3 And Mass Me/6, Polievkt Perov
College of Arts & Sciences Faculty Works
We suggest that the first-generation quarks are not elementary particles, but structures made of a basic elementary particle of charge e/3 and its antiparticle, interacting via an electrostatic force. The structures are suggested for d-quark as consisting of one positive and two negative basic elementary charges, for u-quark as a structure with one negative and three positive basic charges, for an electron as a quark with one positive and four negative basic charges, and for one more quark made of one positive and one negative basic charge. All the suggested structures are in a spinning motion and are stable. The …
Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity,
2023
Clemson University
Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back
All Theses
The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.
This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …
Representations Of Time In Time-Based Media: An Exploration Of The Human Experience Of Temporality In Film And Tv,
2023
Loyola Marymount University and Loyola Law School
Representations Of Time In Time-Based Media: An Exploration Of The Human Experience Of Temporality In Film And Tv, Nelea Fong
Honors Thesis
Time is an aspect of the human experience that fascinates us but eludes our understanding. Humans have turned to science, philosophy, and theology in our endeavor to understand time, but our shared love and history of storytelling drives us to explore temporality through visual medias that have a structural foundation in time. Expanding our understanding of the human experience of time through time-based media such as movies and TV can point us toward comprehending various forms of time and how each person can perceive said time differently. Using film and TV theory, informed by scientific and philosophical explorations in the …
Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism,
2023
William & Mary
Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini
Undergraduate Honors Theses
The Schwinger-Keldysh formalism for non-equilibrium field theory provides valuable tools for studying the black hole information loss paradox. In particular, there exists a Noether-like procedure to obtain the entropy density of a system by a discrete Kubo-Martin-Schwinger (KMS) variation of the action. Here, this Noether-like procedure is applied to the boundary action of an asymptotically anti-de Sitter (aAdS) black hole spacetime in maximally extended Kruskal coordinates. The result is the Kubo formula for shear viscosity, which is known in theories with an Einstein gravity dual to have a universal, constant ratio with the entropy density and is proportional to the …
Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0,
2023
University of Tennessee, Knoxville
Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz
Doctoral Dissertations
Path-Integral Monte Carlo Worm Algorithm is one of many Quantum Monte Carlo (QMC) methods that serve as powerful tools for the simulation of quantum many-body systems. Developed in the late 90’s, this algorithm has been used with great success to study a wide array of physical models where exact calculation of observables is not possible due to the exponential size of the Hilbert space. One type of systems that have eluded PIMC-WA implementation are lattice models at zero temperature, which are of relevance in experimental settings, such as in optical lattices of ultra-cold atoms. In this thesis, we develop a …
Constraining H0 Via Extragalactic Parallax,
2023
University of Richmond
Constraining H0 Via Extragalactic Parallax, Nicholas Ferree
Honors Theses
We examine the prospects for measurement of the Hubble parameter 𝐻0 via observation of the secular parallax of other galaxies due to our own motion relative to the cosmic microwave background rest frame. Peculiar velocities make distance measurements to individual galaxies highly uncertain, but a survey sampling many galaxies can still yield a precise 𝐻0 measurement. We use both a Fisher information formalism and simulations to forecast errors in 𝐻0 from such surveys, marginalizing over the unknown peculiar velocities. The optimum survey observes ∼ 102 galaxies within a redshift 𝐻0max = 0.06. The required errors …
Characterization Of Extended Uncertainty Principle Black Holes,
2023
Loyola Marymount University
Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika
Honors Thesis
Black Holes are special objects as they are at the intersection of Quantum Mechanics and General Relativity. A central tenant of quantum mechanics is the Uncertainty Principle that dictates we cannot know with complete certainty position and momentum at the same time. The Extended Uncertainty Principle introduces a position-related uncertainty correction L_* to account for General Relativity. In a previous paper, a black hole metric associated with the Extended Uncertainty Principle was derived, by modifying the metric function of a Schwarzschild black hole. This metric introduces near-horizon structures that should produce observable effects, such as love numbers, gravitational wave echoes, …
Uncertainty From The Aharonov–Vaidman Identity,
2023
Chapman University
Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer
Mathematics, Physics, and Computer Science Faculty Articles and Research
In this article, I show how the Aharonov–Vaidman identity A|ψ>=<A⟩|ψ>+ΔA| ψ⊥A> can be used to prove relations between the standard deviations of observables in quantum mechanics. In particular, I review how it leads to a more direct and less abstract proof of the Robertson uncertainty relation ΔAΔB≥12|< [A,B]>| than the textbook proof. I discuss the relationship between these two proofs and show how the Cauchy–Schwarz inequality can be derived from the Aharonov–Vaidman identity. I give Aharonov–Vaidman based proofs of the Maccone–Pati uncertainty relations …
An Ab Initio Computation Of The Potential Energy Surfaces Of The Dna Bases,
2023
Southern Adventist University
An Ab Initio Computation Of The Potential Energy Surfaces Of The Dna Bases, Anjali F. Filinovich, Vola Andrianarijaona
Campus Research Day
The potential energy surfaces of atoms in DNA can be analyzed and compared to show how their bonds break. This DNA potential energy reference data is very useful to understanding how DNA damage occurs, however, a dataset of relevant potential energy surfaces is not available for scientific use. We obtain the potential energy surfaces of various atoms in the four DNA bases adenine, thymine, guanine, and cytosine, by moving an atom in these molecules in three orthogonal directions using ORCA, an ab initio quantum chemistry software. Density functional theory is
used to compute potential energies as an atom is moved, …
A Menagerie Of Symmetry Testing Quantum Algorithms,
2023
Louisiana State University and Agricultural and Mechanical College
A Menagerie Of Symmetry Testing Quantum Algorithms, Margarite Lynn Laborde
LSU Doctoral Dissertations
In Chapter 1, we establish the mathematical background used throughout this thesis. We review concepts from group and representation theory. We further establish fundamental concepts from quantum information. This will allow us to then define the different notions of symmetry necessary in the following chapters. In Chapter 2, we investigate Hamiltonian symmetries. We propose quantum algorithms capable of testing whether a Hamiltonian exhibits symmetry with respect to a group. Furthermore, we show that this algorithm is that this algorithm is DQC1-Complete. Finally, we execute one of our symmetry-testing algorithms on existing quantum computers for simple examples. In Chapter 3, we …
Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction,
2023
University of Nebraska–Lincoln
Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction, Yanwei Xiong
Theses, Dissertations, and Student Research: Department of Physics and Astronomy
Capturing the structural changes during a molecular reaction with ultrafast electron diffraction (UED) requires a high spatiotemporal resolution and sufficiently high signal-to-noise to record the signals with high fidelity. In this dissertation, I have focused on the development of a tabletop gas phase keV-UED setup with a femtosecond temporal resolution. A DC electron gun was employed to generate electron pulses with a high repetition rate of 5 kHz. The space charge effect in the electron pulse was ameliorated by compressing the 90 keV electron pulse longitudinally with a time varying electric field in an RF cavity. The velocity mismatch between …
Modeling Excited State Processes In Molecular Aggregates By Constructing An Adaptive Basis For The Hierarchy Of Pure States,
2023
Southern Methodist University
Modeling Excited State Processes In Molecular Aggregates By Constructing An Adaptive Basis For The Hierarchy Of Pure States, Leonel Varvelo
Chemistry Theses and Dissertations
Simulating excitation energy transfer (EET) in molecular materials is of crucial importance for the development of and understanding of materials such as organic photovoltaics and photosynthetic systems and further development of novel materials. The Hierarchy of Pure States (HOPS) is an exact framework for the time evolution of an open quantum system in which a hierarchy of stochastic wave functions are propagated in time. The adaptive HOPS (adHOPS) method achieves size-invariant scaling with the number of simulated molecules for sufficiently large aggregates by using an adaptive basis that moves with the excitation through the material. To demonstrate the power of …
