Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,582 Full-Text Articles 3,746 Authors 603,611 Downloads 132 Institutions

All Articles in Optics

Faceted Search

2,582 full-text articles. Page 75 of 97.

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru 2014 University of Kentucky

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru

Theses and Dissertations--Electrical and Computer Engineering

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit …


Modification Of Plasmonic Nano Structures' Absorption And Scattering Under Evanescent Wave Illumination Above Optical Waveguides Or With The Presence Of Different Material Nano Scale Atomic Force Microscope Tips, Gazi Mostafa Huda 2014 University of Kentucky

Modification Of Plasmonic Nano Structures' Absorption And Scattering Under Evanescent Wave Illumination Above Optical Waveguides Or With The Presence Of Different Material Nano Scale Atomic Force Microscope Tips, Gazi Mostafa Huda

Theses and Dissertations--Electrical and Computer Engineering

The interaction of an evanescent wave and plasmonic nanostructures are simulated in Finite Element Method. Specifically, the optical absorption cross section (Cabs) of a silver nanoparticle (AgNP) and a gold nanoparticle (AuNP) in the presence of metallic (gold) and dielectric (silicon) atomic force microscope (AFM) probes are numerically calculated in COMSOL. The system was illuminated by a transverse magnetic polarized, total internally reflected (TIR) waves or propagating surface plasmon (SP) wave. Both material nanoscale probes localize and enhance the field between the apex of the tip and the particle. Based on the absorption cross section equation the author …


Diffraction-Based Techniques For High Contrast X-Ray Imaging, Lubna Naseem Peerzada 2014 University at Albany, State University of New York

Diffraction-Based Techniques For High Contrast X-Ray Imaging, Lubna Naseem Peerzada

Legacy Theses & Dissertations (2009 - 2024)

Two X-ray diffraction based techniques for high contrast were explored to improve contrast in radiology: diffraction enhanced imaging (DEI) and coherent scatter imaging.


Direct Coupling Of Photonic Modes And Surface Plasmon Polaritons Observed In 2-Photon Peem, Robert Campbell Word, Joseph Fitzgerald, Rolf Könenkamp 2013 Portland State University

Direct Coupling Of Photonic Modes And Surface Plasmon Polaritons Observed In 2-Photon Peem, Robert Campbell Word, Joseph Fitzgerald, Rolf Könenkamp

Physics Faculty Publications and Presentations

We report the direct microscopic observation of optical energy transfer from guided photonic modes in an indium tin oxide (ITO) thin film to surface plasmon polaritons (SPP) at the surfaces of a single crystalline gold platelet. The photonic and SPP modes appear as an interference pattern in the photoelectron emission yield across the surface of the specimen. We explore the momentum match between the photonic and SPP modes in terms of simple waveguide theory and the three-layer slab model for bound SPP modes of thin metal films. We show that because the gold is thin (30- 40 nm), two SPP …


Tracking Real-Time Nanoparticle Positions And Measuring Three-Dimensional Solution Flow With A Four-Focus Confocal Microscope, James Andrew Germann 2013 University of Tennessee - Knoxville

Tracking Real-Time Nanoparticle Positions And Measuring Three-Dimensional Solution Flow With A Four-Focus Confocal Microscope, James Andrew Germann

Doctoral Dissertations

This dissertation presents the development of instrumentation for measuring the position of a single emitter within the sample volume of a confocal fluorescence microscope with sub-diffraction limited precision in three dimensions together with applications for determining solution flow and for tracking a fluorescent nanoparticle as it undergoes Brownian diffusion. The localization method is based on comparing photon counts from alternating excitation of the emitter by four laser beams, which are focused at slightly offset positions in a tetrahedral pattern within the confocal volume. Two experimental set-ups are constructed. In the first, the four beams are from a femtosecond laser, which …


Temperatures In The Mid-Latitude Mesosphere During Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Data, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron 2013 Utah State University

Temperatures In The Mid-Latitude Mesosphere During Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Data, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Graduate Student Posters

Sudden Stratospheric Warmings (SSWs) are major disturbances in the polar region of the winter hemisphere that cause major changes in stratospheric temperature and circulation. SSWs are characterized by a temperature increase of tens of degrees Kelvin, averaged over 60°-90° latitude, and a weakening of the polar vortex that persists for the order of a week at the 10 hPa level (roughly 32 km) [Labitzke and Naujokat, 2000]. The polar vortices are cyclones centered on both of the Earth’s poles that are present from the mid-troposphere to the lower stratosphere. Eastward zonal winds define the strong polar vortices in the winter. …


Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Jeffrey W. Oliver, Revecca Vincelette, Gary Noojin, Clifton D. Clark, Corey Harbert, Kurt J. Schuster, Aurora D. Schingledecker, Semih S. Kumru, Justin Maughan, Naomi Kitzis, Gavin D. Buffington, David J. Stolarski, Robert J. Thomas 2013 Air Force Research Laboratory

Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Jeffrey W. Oliver, Revecca Vincelette, Gary Noojin, Clifton D. Clark, Corey Harbert, Kurt J. Schuster, Aurora D. Schingledecker, Semih S. Kumru, Justin Maughan, Naomi Kitzis, Gavin D. Buffington, David J. Stolarski, Robert J. Thomas

Physics Faculty Publications

A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ∼0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of opticalthermal interaction. …


Analysis Of Polarimetric Synthetic Aperture Radar And Passive Visible Light Polarimetric Imaging Data Fusion For Remote Sensing Applications, Sanjit Maitra 2013 Rochester Institute of Technology

Analysis Of Polarimetric Synthetic Aperture Radar And Passive Visible Light Polarimetric Imaging Data Fusion For Remote Sensing Applications, Sanjit Maitra

Theses

The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information …


Steady-State Switching And Dispersion/Absorption Spectroscopy Of Multistate Atoms Inside An Optical Ring Cavity, Jiteng Sheng 2013 University of Arkansas, Fayetteville

Steady-State Switching And Dispersion/Absorption Spectroscopy Of Multistate Atoms Inside An Optical Ring Cavity, Jiteng Sheng

Graduate Theses and Dissertations

This thesis mainly focuses on the experimental investigations of electromagnetically induced transparency (EIT) related phenomena in various systems involving multilevel atoms inside an optical ring cavity. Semiclassical methods, e.g. density-matrix equations, are used through out this thesis to simulate the experimental results. First, the cavity transmission spectrum can be significantly modified when multilevel atoms are placed inside an optical ring cavity. Such coupled atom-cavity systems are well explained by the intracavity dispersion/absorption properties. Specifically, three-level lambda-type, four-level N-type and double-lambda-type atoms inside an optical ring cavity are investigated by examining their cavity transmission spectra. Second, optical multistability (OM) has been …


Design And Fabrication Of An Infrared Optical Pyrometer Asic As A Diagnostic For Shock Physics Experiments, Jared Gordon 2013 University of Nevada, Las Vegas

Design And Fabrication Of An Infrared Optical Pyrometer Asic As A Diagnostic For Shock Physics Experiments, Jared Gordon

UNLV Theses, Dissertations, Professional Papers, and Capstones

Optical pyrometry is the sensing of thermal radiation emitted from an object using a photoconductive device to convert photons into electrons, and is an important diagnostic tool in shock physics experiments. Data obtained from an optical pyrometer can be used to generate a blackbody curve of the material prior to and after being shocked by a high speed projectile. The sensing element consists of an InGaAs photodiode array, biasing circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from the noisy dark current into a signal that can eventually be digitized. Once the circuit elements have been defined, more …


Stimulated Raman Scattering In Micro Sphere Resonators, Ruoyu Zhang 2013 Clemson University

Stimulated Raman Scattering In Micro Sphere Resonators, Ruoyu Zhang

All Theses

Micro sphere resonators that hold optical whisper gallery modes (WGMs) provide an innovative option for implementing micro optical resonators. The unique properties of the micro sphere resonator make it capable to introduce resonance for various optical phenomenon, like stimulated Raman scattering (SRS), in micron scale.

This thesis illustrates the characteristics of micro sphere resonators and demonstrates the resonance-enhanced SRS in micro sphere resonators with reduce threshold power. Both theoretical and experimental results are presented. Coupling model for WGM is derived in transfer matrix method. Simulation analyses for mode pattern of WGMs are solved based on mathematic model and finite element …


Physics-Based Surface Energy Model Optimization For Water Bodies In Cold Climates Using Visible And Calibrated Thermal Infrared Imagery, May V. Casterline 2013 Rochester Institute of Technology

Physics-Based Surface Energy Model Optimization For Water Bodies In Cold Climates Using Visible And Calibrated Thermal Infrared Imagery, May V. Casterline

Theses

When tasked with accurately modeling a water body in a cold climate environment, the complexity of the system being simulated and the numerous parameters affecting the observable outcome pose an arduous task for any modeling effort. The task is increasingly complicated when the body of water is serving as a cooling pond for a power plant and can become partially frozen. The introduction of a heat effluent into the water creates a highly dynamic system whose physical state is not only reactionary to the surrounding environmental conditions, but the industrial facility's operating parameters as well. Both calibrated thermal and visible …


Two Dimensional Angular Domain Optical Imaging In Biological Tissues, Eldon Ng 2013 The University of Western Ontario

Two Dimensional Angular Domain Optical Imaging In Biological Tissues, Eldon Ng

Electronic Thesis and Dissertation Repository

Optical imaging is a modality that can detect optical contrast within a biological sample that is not detectable with other conventional imaging techniques. Optical trans-illumination images of tissue samples are degraded by optical scatter. Angular Domain Imaging (ADI) is an optical imaging technique that filters scattered photons based on the trajectory of the photons. Previous angular filters were limited to one dimensional arrays, greatly limiting the imaging capability of the system.

We have developed a 2D Angular Filter Array (AFA) that is capable of acquiring two dimensional projection images of a sample. The AFA was constructed using rapid prototyping techniques. …


Molecular Fluorescence In The Vicinity Of A Charged Metallic Nanoparticle, H. Y. Chung, P. T. Leung, D. P. Tsai 2013 Academia Sinica

Molecular Fluorescence In The Vicinity Of A Charged Metallic Nanoparticle, H. Y. Chung, P. T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

The modified fluorescence properties of a molecule in the vicinity of a metallic nanoparticle are further studied accounting for the possible existence of extraneous charges on the particle surface. This is achieved via a generalization of the previous theory of Bohren and Hunt for light scattering from a charged sphere, with the results applied to the calculation of the various decay rates and fluorescence yield of the admolecule. Numerical results show that while charge effects will in general blue-shift all the plasmonic resonances of the metal particle, both the quantum yield and the fluorescence yield can be increased at emission …


Characterization Of Planar Wave Guides By Angle-Dependent Excitation Of Guided Modes, Edward D. Lunde 2013 California Polytechnic State University - San Luis Obispo

Characterization Of Planar Wave Guides By Angle-Dependent Excitation Of Guided Modes, Edward D. Lunde

Physics

In this project a high resolution rotation stage was used to measure the angle of coupling of light into planar waveguide modes. Control of the stage and acquisition of light intensity data was done using the commercially available programming environment, MATLAB. Reliable, repeatable excitation of modes was done using prism coupling. We also investigated coupling using a surface grating on the waveguide.


Global Fossil Energy Markets And Climate Change Mitigation: An Analysis With Remind, Nico Bauer, Ioanna Mouratiadou, Gunnar Luderer, Lavinia Baumstark, Robert J. Brecha, Ottmar Edenhofer, Elmar Kriegler 2013 Potsdam Institute for Climate Impact Research

Global Fossil Energy Markets And Climate Change Mitigation: An Analysis With Remind, Nico Bauer, Ioanna Mouratiadou, Gunnar Luderer, Lavinia Baumstark, Robert J. Brecha, Ottmar Edenhofer, Elmar Kriegler

Physics Faculty Publications

We analyze the dynamics of global fossil resource markets under different assumptions for the supply of fossil fuel resources, development pathways for energy demand, and climate policy settings. Resource markets, in particular the oil market, are characterized by a large discrepancy between costs of resource extraction and commodity prices on international markets. We explain this observation in terms of (a) the intertemporal scarcity rent, (b) regional price differentials arising from trade and transport costs, (c) heterogeneity and inertia in the extraction sector. These effects are captured by the REMIND model. We use the model to explore economic effects of changes …


Multi-Level Surface Enhanced Raman Scattering Using AgoX Thin Film, Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, Hai-Pang Chiang, P.T. Leung, D. P. Tsai 2013 Portland State University

Multi-Level Surface Enhanced Raman Scattering Using AgoX Thin Film, Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, Hai-Pang Chiang, P.T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

Ag nanostructures with surface-enhanced Raman scattering (SERS) activities have been fabricated by applying laser-direct writing (LDW) technique on silver oxide (AgOx) thin films. By controlling the laser powers, multi-level Raman imaging of organic molecules adsorbed on the nanostructures has been observed. This phenomenon is further investigated by atomic-force microscopy and electromagnetic calculation. The SERS-active nanostructure is also fabricated on transparent and flexible substrate to demonstrate our promising strategy for the development of novel and low-cost sensing chip.


Fabrication Of Multilayered Structure For Coherent Random Lasing, John Rauchenstein, Young L. Kim 2013 Purdue University

Fabrication Of Multilayered Structure For Coherent Random Lasing, John Rauchenstein, Young L. Kim

The Summer Undergraduate Research Fellowship (SURF) Symposium

High powered lasers have many applications, including medical treatment and surgery. However, these lasers are extremely expensive and are therefore not widely available. The aim of this study was to demonstrate a method to create such a laser with significantly decreased overall cost and increased efficiency. In order to do this, we explored a phenomenon called random lasing which is a light amplification process. To start with, a low-cost pumping laser is directed at normal incidence toward a multi-layered sample with two alternating layers. At first pearl, a naturally found material that has many organic nano-scale layers (similar to the …


Humidity And Temperature Effect On Properties Of Transmission Gratings Recorded In Pva/Aa-Based Photopolymer Layers, Tatsiana Mikulchyk, Suzanne Martin, Izabela Naydenova 2013 Technological University Dublin

Humidity And Temperature Effect On Properties Of Transmission Gratings Recorded In Pva/Aa-Based Photopolymer Layers, Tatsiana Mikulchyk, Suzanne Martin, Izabela Naydenova

Articles

This paper explores the effects of humidity on gratings recorded in a polyvinylalcohol–acrylamide photopolymer medium. Investigation of the behaviour of transmission gratings exposed to high humidity is of significant interest for two reasons, firstly because the grating's sensitivity to humidity can be exploited for the development of irreversible humidity indicators, secondly because too much sensitivity to humidity can limit the use of these materials in applications where an environmentally stable hologram is needed. In this paper we focus on the effect of high humidity on the properties of volume phase transmission gratings recorded in PVA/AA photopolymer layers in the temperature …


Dynamic Optical Sampling By Cavity Tuning And Its Application In Lidar, Lin Yang, Jinsong Nie, Lingze Duan 2013 University of Alabama in Huntsville

Dynamic Optical Sampling By Cavity Tuning And Its Application In Lidar, Lin Yang, Jinsong Nie, Lingze Duan

Von Braun Symposium Student Posters

No abstract provided.


Digital Commons powered by bepress