Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,529 Full-Text Articles 3,633 Authors 603,611 Downloads 131 Institutions

All Articles in Optics

Faceted Search

2,529 full-text articles. Page 74 of 95.

The Carbon Rent Economics Of Climate Policy, Matthias Kalkuhl, Robert J. Brecha 2013 Potsdam Institute for Climate Impact Research

The Carbon Rent Economics Of Climate Policy, Matthias Kalkuhl, Robert J. Brecha

Physics Faculty Publications

By reducing the demand for fossil fuels, climate policy can reduce scarcity rents for fossil resource owners. As mitigation policies ultimately aim to limit emissions, a new scarcity for “space” in the atmosphere to deposit emissions is created. The associated scarcity rent, or climate rent (that is, for example, directly visible in permit prices under an emission trading scheme) can be higher or lower than the original fossil resource rent. In this paper, we analyze analytically and numerically the impact of mitigation targets, resource availability, backstop costs, discount rates and demand parameters on fossil resource rents and the climate rent. …


Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi 2013 University of Dayton

Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

A series of recent studies involving hybrid acousto-optic (AO) scattering in the Bragg domain under first-order feedback have shown the ability of the AO feedback system to encrypt, transmit and decrypt RF information applied via the sound driver. The basic premise of this operation is founded on the chaotic nature of the hybrid Bragg cell under feedback.


Complex Reflection Coefficients Of P- And S-Polarized Light At The Pseudo-Brewster Angle Of A Dielectric–Conductor Interface, Rasheed M.A. Azzam 2013 University of New Orleans

Complex Reflection Coefficients Of P- And S-Polarized Light At The Pseudo-Brewster Angle Of A Dielectric–Conductor Interface, Rasheed M.A. Azzam

Electrical Engineering Faculty Publications

The complex Fresnel reflection coefficients rp and rs of p- and s-polarized light and their ratio ρ = rp/rs at the pseudo-Brewster angle (PBA) φpBof a dielectric-conductor interface are evaluated for all possible values of the complex relative dielectric function Ε = |Ε| exp(-jθ) = Εr - jΕi, Εi > 0 that share the same φpB. Complex-plane trajectories of rp, rs, and ρ at the PBA are presented at discrete values of φpB from 5° to 85° in equal steps of 5° as θ is increased from 0° to 180°. It is shown that for φpB > 70° (high-reflectance metals in the …


Hamamatsu Flash4.0 Scmos Exposure Time Series, George McNamara 2013 M.D. Anderson Cancer Center

Hamamatsu Flash4.0 Scmos Exposure Time Series, George Mcnamara

George McNamara

Hamamatsu FLASH4.0 scientific cMOS camera exposure time series are pairs of images of:

1 millisecond (00,001ms series)

10 millisecond (00,010ms series)

100 millisecond (00,100ms series)

1,000 millisecond (01,000ms series)

4,000 millisecond (04,000ms series)

10,000 millisecond (10,000ms series)

I also included:

* difference images (exposure 2 minus exposure 1 plus 100 intensity values).

* a series of eleven 1 second (1,000 ms) exposure time images in a multi-plane TIFF file (different images than the pair of 1,000ms images above).

* Stack Arithmetic: Median, Average, Minimum, Maximum, of the eleven plane series (Stack Arithmetic is a MetaMorph command).

These images were acquired …


The Mid-Latitude Mesosphere’S Response To Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Temperatures, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron 2013 Utah State University

The Mid-Latitude Mesosphere’S Response To Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Temperatures, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Leda Sox

The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected temperature data for 11 years, from 1993 through 2004. The temperatures derived from these data extended over the mesosphere, from 45 to 90 km. Recently, they were combined with other observations to examine the mid-latitude responses to Sudden Stratospheric Warmings (SSWs) in the polar regions. (The other observational instruments being an ionosonde, a meteor wind radar, a Na lidar, and a satellite.) Extensive Rayleigh lidar observations were made …


Weak-Values Technique For Velocity Measurements, Gerardo I. Viza, Julián Martínez-Rincón, Gregory A. Howland, Hadas Frostig, Itay Shomroni, Barak Dayan, John C. Howell 2013 University of Rochester

Weak-Values Technique For Velocity Measurements, Gerardo I. Viza, Julián Martínez-Rincón, Gregory A. Howland, Hadas Frostig, Itay Shomroni, Barak Dayan, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

In a recent Letter, Brunner and Simon proposed an interferometric scheme using imaginary weak values with a frequency-domain analysis to outperform standard interferometry in longitudinal phase shifts [Phys. Rev. Lett 105, 010405 (2010)]. Here we demonstrate an interferometric scheme combined with a time-domain analysis to measure longitudinal velocities. The technique employs the near-destructive interference of non-Fourier limited pulses, one Doppler shifted due to a moving mirror in a Michelson interferometer. We achieve a velocity measurement of 400  fm/s and show our estimator to be efficient by reaching its Cramér–Rao bound.


Three-Dimensional Electrokinetic Trapping Of A Single Fluorescent Nanoparticle In Solution, Jason Keith King 2013 University of Tennessee, Knoxville

Three-Dimensional Electrokinetic Trapping Of A Single Fluorescent Nanoparticle In Solution, Jason Keith King

Doctoral Dissertations

This dissertation presents the development of an instrument for effectively trapping a single fluorescent nanoparticle that is freely diffusing in solution in all three dimensions. The instrument is expected to have applications for studies of single nanoparticles or molecules for which prolonged observations are required, but without immobilization or proximity to a surface, which may alter behavior. The trapping technique depends on rapid three-dimensional position measurements of the nanoparticle with sub-micron precision, which are used for real-time control of induced electrokinetic motion, so as to counteract Brownian motion. While anti-Brownian electrokinetic trapping experiments in one and two dimensions have previously …


Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson 2013 California State University - Long Beach

Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson

STAR Program Research Presentations

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is a converted 747SP that houses a 2.5 m telescope that observes the sky through an opening in the side of the aircraft. Because it flies at altitudes up to 45,000 feet, SOFIA gets 99.99% transmission in the infrared. Multiple science instruments mount one at a time on the telescope to interpret infrared and visible light from target sources. Ball Infrared Black (BIRB) currently coats everything that the optics sees inside the telescope assembly (TA) cavity in order to eliminate noise from the glow of background sky, aircraft exhaust, and other sources. A …


Vertical Beam Size Measurements In The Spear3 Accelerator At Slac, Natalie Ann LaRosa, Jeff Corbett 2013 California Polytechnic State University - San Luis Obispo

Vertical Beam Size Measurements In The Spear3 Accelerator At Slac, Natalie Ann Larosa, Jeff Corbett

STAR Program Research Presentations

Synchrotron radiation is a powerful tool used in many fields of science ranging from materials characterization to structural biology. Each year thousands of scientists travel to SLAC to use high-resolution x-rays emitted from a relativistic electron beam circulating in the SPEAR3 synchrotron light source. To characterize the beam size in SPEAR3, we constructed a visible-light interferometer capable of measuring the 22um vertical beam size. The interferometer is located 17m away from the source point and consists of two vertically separated slits. Visible light emitted from the synchrotron passes through the two slits and interferes on a CCD camera to produce …


Numerical Examination Of Acousto-Optic Bragg Interactions For Profiled Lightwaves Using A Transfer Function Formalism, Monish Ranjan Chatterjee, Fares S. Almehmadi 2013 University of Dayton

Numerical Examination Of Acousto-Optic Bragg Interactions For Profiled Lightwaves Using A Transfer Function Formalism, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

Classically, acousto-optic (AO) interactions comprise scattering of photons by energetic phonons into higher and lower orders. Standard weak interaction theory describes diffraction in the Bragg regime as the propagation of a uniform plane wave of light through a uniform plane wave of sound, resulting in the well-known first- and zeroth-order diffraction.

Our preliminary investigation of the nature of wave diffraction and photon scattering from a Bragg cell under intensity feedback with profiled light beams indicates that the diffracted (upshifted photon) light continues to maintain the expected (uniform plane wave) behavior versus the optical phase shift in the cell within a …


Investigation Of Negative Index In Dispersive, Chiral Materials Via Contra-Propagating Velocities Under Second-Order Dispersion (Gvd), Monish Ranjan Chatterjee, Tarig A. Algadey 2013 University of Dayton

Investigation Of Negative Index In Dispersive, Chiral Materials Via Contra-Propagating Velocities Under Second-Order Dispersion (Gvd), Monish Ranjan Chatterjee, Tarig A. Algadey

Electrical and Computer Engineering Faculty Publications

Negative refractive index arises typically in metamaterials via multiple routes. One such avenue is the condition where the Poynting vector of the electromagnetic wave is in opposition to the group velocity in the material. An earlier work along this route in a chiral material led to the well-known result of requiring very large (non-realizable) chirality.

Thereafter, a combination of chirality together with first-order dispersion was examined using plane wave electromagnetic analysis. To arrive at the conclusions in that approach, the three wave velocities (energy, group and phase) were derived under first-order dispersion in permittivity, permeability and chirality. Negative index in …


The Standard New Astronomy Cryostat For Sofia: A Design For Cryogen-Free Infrared Astronomy, Carey F. Scott, Jeffrey Van Cleve, Eric Burgh, earl T. Daley, Ali Kashani, Zaheer Ali 2013 CSU Chico

The Standard New Astronomy Cryostat For Sofia: A Design For Cryogen-Free Infrared Astronomy, Carey F. Scott, Jeffrey Van Cleve, Eric Burgh, Earl T. Daley, Ali Kashani, Zaheer Ali

STAR Program Research Presentations

Astronomy at infrared wavelengths requires optical instruments that operate at low temperatures, which is typically done using liquid cryogens such as nitrogen and helium. These cryogens are costly and limit the operational time of the science instrument. The Standard New Astronomy Cryostat for SOFIA (SNACS) will provide a design for a helium cryocooler-cooled cryostat that meets the stringent airworthiness requirements of the Stratospheric Observatory for Infrared Astronomy (SOFIA) and can be used by future instrument builders to reduce the cost and risk of their instrument design and development. The SNACS dewar will provide approximately 3.4 x 10-1 cubic meters …


Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach 2013 San Francisco State University

Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach

STAR Program Research Presentations

FLITECAM Data Processing Validation

Many of the challenges that come from working with astronomical imaging arise from the reduction of raw data into scientifically meaningful data. First Light Infrared Test CAMera (FLITECAM) is an infrared camera operating in the 1.0–5.5 μm waveband on board SOFIA (Stratospheric Observatory For Infrared Astronomy). Due to the significant noise from the atmosphere and the camera itself, astronomers have developed many methods to reduce the effects of atmospheric and instrumental emission. The FLITECAM Data Reduction Program (FDRP) is a program, developed at SOFIA Science Center, subtracts darks, removes flats, and dithers images.

This project contains …


Designing A Cold Source To Be Integrated With The Existing Telescope Assembly Alignment Simulator, Rebecca L. Salvemini, Carey Baxter, Zaheer Ali, Greg Perryman, Robert Thompson, Daniel Nolan 2013 Sonoma State University

Designing A Cold Source To Be Integrated With The Existing Telescope Assembly Alignment Simulator, Rebecca L. Salvemini, Carey Baxter, Zaheer Ali, Greg Perryman, Robert Thompson, Daniel Nolan

STAR Program Research Presentations

The stratospheric observatory for infrared astronomy (SOFIA), is a modified Boeing 747-SP with a 2.5m telescope mounted inside. SOFIA flies at an altitude of 45,000 feet, above 99% of the water vapor in the atmosphere, allowing transmission of most infrared radiation. SOFIA has seven different science instruments (SI) that can be used to collect astronomical data, enabling scientists to look at many different wavelengths of infrared and visible radiation.


Optical And Thermal Properties Of Spinel With Revised (Increased) Absorption At 4 To 5 Μm Wavelengths And Comparison With Sapphire, Daniel C. Harris, Giorgio Turri 2013 Naval Air Warfare Center

Optical And Thermal Properties Of Spinel With Revised (Increased) Absorption At 4 To 5 Μm Wavelengths And Comparison With Sapphire, Daniel C. Harris, Giorgio Turri

Publications

Infrared absorption of high-quality, commercial, polycrystalline MgAl2O4 spinel is ∼40% greater in the range of 3.8 to 5.0 μm than the value predicted by the computer code OPTIMATR®, which has been used for window and dome design for more than 20 years. As a result, spinel and a-plane sapphire windows designed to support the same external pressure with the same probability of survival have approximately the same infrared absorptance in the range 3.8 to 5.0 μm. c-Plane sapphire has greater absorptance than spinel in the range 3.8 to 5.0 μm. Spinel has two weak absorption bands near 1.8 and 3.0 …


Adaptive Wiener Filter Super-Resolution Of Color Filter Array Images, Barry K. Karch, Russell C. Hardie 2013 Air Force Research Laboratory

Adaptive Wiener Filter Super-Resolution Of Color Filter Array Images, Barry K. Karch, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method …


High-Performance, Scalable Optical Network-On-Chip Architectures, Xianfang Tan 2013 University of Nevada, Las Vegas

High-Performance, Scalable Optical Network-On-Chip Architectures, Xianfang Tan

UNLV Theses, Dissertations, Professional Papers, and Capstones

The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with …


All-Optical Sigma-Delta Modulator For Analog-To-Digital Conversion, Bin Zhang 2013 Rose-Hulman Institute of Technology

All-Optical Sigma-Delta Modulator For Analog-To-Digital Conversion, Bin Zhang

Graduate Theses - Physics and Optical Engineering

In this thesis, an all-optical sigma-delta (ΣΔ) modulator for analog-to-digital conversion (ADC) using a novel optical bistable switch, the SOA-PD device, is demonstrated. The presented all-optical ΣΔ modulator consists of a photonic leaky integrator, the SOA-PD optical comparator, and a positive feedback loop. The switching properties of the SOA-PD device are studied and experimentally tested to confirm its performance. Then the all-optical ΣΔ modulator is designed according to the switching performance of the SOA-PD device. It is demonstrated that the all-optical ΣΔ modulator is capable of producing an inverted non-return-to-zero (NRZ) type binary output for frequencies in the range of …


Rayleigh Lidar Temperature Studies In The Upper Mesosphere And Lower Thermosphere, Leda Sox, Vincent B. Wickwar, Josh P. Herron, Matthew T. Emerick 2013 Utah State University

Rayleigh Lidar Temperature Studies In The Upper Mesosphere And Lower Thermosphere, Leda Sox, Vincent B. Wickwar, Josh P. Herron, Matthew T. Emerick

Leda Sox

No abstract provided.


Design And Study Of Acrylamide-Based Photopolymer Holographic Optical Elements For Solar Application, Hoda Akbari, Izabela Naydenova, Manus Kennedy, John Doran, Suzanne Martin 2013 Technological University Dublin

Design And Study Of Acrylamide-Based Photopolymer Holographic Optical Elements For Solar Application, Hoda Akbari, Izabela Naydenova, Manus Kennedy, John Doran, Suzanne Martin

Conference Papers

Abstract: Solar concentrators can be used to reduce the cost of photovoltaic electrical power generation by collecting incident solar radiation from a given aperture area and transmitting the energy to a reduced area. In doing so, the overall cost of power (Wp) can be reduced as less area of photovoltaic is required. This paper will discuss Holographic Solar Concentrators fabricated in an acrylamide photopolymer , describing the optical recording process and showing how the fabricated HOE’s can be used in solar concentrator devices. Preliminary lifetime studies are also discussed.


Digital Commons powered by bepress