Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,998 Full-Text Articles 4,812 Authors 440,757 Downloads 145 Institutions

All Articles in Atomic, Molecular and Optical Physics

Faceted Search

1,998 full-text articles. Page 2 of 68.

Development Of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition, Benjamin Belfore 2022 Old Dominion University

Development Of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition, Benjamin Belfore

Electrical & Computer Engineering Theses & Dissertations

Spin polarized photocathodes are necessary to examine parity violations and other fundamental phenomena in the field of high energy physics. To create these devices, expensive and complicated growth processes are necessary. While integral to accelerator physics, spin polarized electrons could have other exciting applications in materials science and other fields of physics. In order to explore these other applications feasibly, the relative supply of spin polarized photocathodes with a high rate of both polarization and photoemission needs to be increased. One such way to increase this supply is to develop the means to grow them faster and at a larger …


Studying The Synthesis Of 196Hg At Astrophysically Relevant Energies Through The Measurement Of Capture Reaction Cross-Sections Of (P, Γ) (P, N) And (P, Α) Reactions, Khushi Bhatt 2022 Western Michigan University

Studying The Synthesis Of 196Hg At Astrophysically Relevant Energies Through The Measurement Of Capture Reaction Cross-Sections Of (P, Γ) (P, N) And (P, Α) Reactions, Khushi Bhatt

Dissertations

Understanding the origin of all the chemical elements is an important question for the nuclear-astrophysics community. There are many unanswered questions like: What astrophysical events are responsible for the synthesis of what particular chemical elements? How many different elements were made in total? What is the abundance of each synthesized element? etc. Currently, scientists are largely depending upon theory and simulations to define nuclear and astrophysical reaction. This makes it critical to have accurate experimental nuclear physics data to input in astrophysical theoretical models. However, out of more than 20000 reactions involved in these calculations, only a very few are …


Probing The Equation Of State Of Neutron Stars With Heavy Ion Collisions, Om Bhadra Khanal 2022 Western Michigan University

Probing The Equation Of State Of Neutron Stars With Heavy Ion Collisions, Om Bhadra Khanal

Dissertations

The equation of state (EOS) is a fundamental property of nuclear matter, important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Nuclear reactions, especially heavy-ion collisions in the laboratories, can produce the nuclear matter similar to those contained in neutron stars. The density and the momentum dependence of the EOS of asymmetric nuclear matter, especially the symmetry energy term, is widely unconstrained. Finding appropriate constrains, especially at higher densities of the nuclear matter, requires the development of new devices, new experimental measurements as well as advances in theoretical understanding of nuclear collisions …


Quantum Dots In Two-Dimensional Tungsten Diselenide, Jeb Allen Michael Stacy 2022 University of Arkansas, Fayetteville

Quantum Dots In Two-Dimensional Tungsten Diselenide, Jeb Allen Michael Stacy

Graduate Theses and Dissertations

This work focuses on the investigation of single and double quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe_2) as a means to evaluate the valley degree of freedom as a potential qubit and ambipolar tungsten diselenide monolayers as single photon sources. Gate-defined quantum dots in monolayer and bilayer WSe_2 were fabricated and characterized. Single dot devices are gated from above and below the WSe_2 to accumulate a hole gas. Temperature dependence of Coulomb-blockade peak height is consistent with single-level transport. Excited-state transport in the quantum dot is shown for both monolayer and bilayer devices. Magnetic field dependence of …


Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke 2022 University of Arkansas, Fayetteville

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


Weakness Of Weak Values: Incompatibility Of Anomalous Pulse-Spectrum Amplification And Optical Frequency Combs, John C. Howell 2022 Chapman University

Weakness Of Weak Values: Incompatibility Of Anomalous Pulse-Spectrum Amplification And Optical Frequency Combs, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We probe the use of optical frequency combs to place lower bounds on anomalous amplification of a weak-value-measured pulse delay, potentially reaching a theoretical temporal resolution of better than 10−34 s. Owing to the interferometric behavior of weak values, we show that anomalous weak value amplification of a time delay is not equivalent to a temporal linear phase ramp. We show that the anomalous weak value is a rearrangement of amplitudes that generates an apparent shift that can be measured in direct detection, but does not change the actual frequency offset of a spectral distribution measurable in coherent detection. …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi 2022 Louisiana State University

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Surpassing The Standard Quantum Limit Using An Optical Spring, Torrey Cullen 2022 Louisiana State University at Baton Rouge

Surpassing The Standard Quantum Limit Using An Optical Spring, Torrey Cullen

LSU Doctoral Dissertations

In 1916, Albert Einstein predicted the existence of gravitational waves based on his new theory of general relativity. He predicted an accelerating mass with a non-zero quadrupole moment would emit energy in the form of gravitational waves. Often referred to as ripples in space-time, gravitational waves are extremely small by the time reach Earth, potentially having traveled hundreds of megaparsecs. It is common for these ripples in space-time to stretch and squeeze matter 1000 times smaller than the width of a proton.
Laser interferometer observatories were first built in the 1990s in the US and Europe, and as sensitivity improvements …


Localized Surface Plasmon Resonance Of Copper Nanoparticles Using Finite Element Method, Samaya El Samad, Salem Marhaba 2022 PhD Student, Faculty of Science, Beirut Arab University

Localized Surface Plasmon Resonance Of Copper Nanoparticles Using Finite Element Method, Samaya El Samad, Salem Marhaba

BAU Journal - Science and Technology

The aim of this paper is to study the interaction of the electromagnetic wave with plasmonic nanoparticles. Localized Surface Plasmon resonance (LSPR) characteristics are governed by the intrinsic properties of the nanoparticle (size, shape and dielectric environment). The extinction cross-section spectra of Cu nanoparticles are calculated using finite element method (FEM). By increasing both the size of the nanoparticle and the dielectric environment, the simulations show a red-shifting and broadening on the LSPR spectrum with enhancement of the spectral amplitude. The extinction cross section spectra are calculated using polarized light for non-spherical or assembled nanoparticles. We investigated the LSPR of …


Ultrafast Electron Diffraction: Visualizing Dynamic States Of Matter, D. Filipetto, P. Musumed, R. K. Li, B. J. Siwick, M. R. Otto, Martin Centurion, J. P.F. Nunes 2022 Lawrence Berkeley National Laboratory

Ultrafast Electron Diffraction: Visualizing Dynamic States Of Matter, D. Filipetto, P. Musumed, R. K. Li, B. J. Siwick, M. R. Otto, Martin Centurion, J. P.F. Nunes

Martin Centurion Publications

Since the discovery of electron-wave duality, electron scattering instrumentation has developed into a powerful array of techniques for revealing the atomic structure of matter. Beyond detecting local lattice variations in equilibrium structures with the highest possible spatial resolution, recent research efforts have been directed towards the long sought-after dream of visualizing the dynamic evolution of matter in real-time. The atomic behavior at ultrafast timescales carries critical information on phase transition and chemical reaction dynamics, the coupling of electronic and nuclear degrees of freedom in materials and molecules, the correlation between structure, function and previously hidden metastable or nonequilibrium states of …


Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. McCluskey, Matthew G. Colbear, James P.V. McConville, Shane J. McCartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. McQuaid, J. Marty Gregg 2022 Queen’s University Belfast

Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg

Alexei Gruverman Publications

Recently, electrically conducting heterointerfaces between dissimilar band-insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport has been thoroughly explored and fundamental aspects of conduction firmly established. Perhaps surprisingly, similar insights into conceptually much simpler conducting homointerfaces, such as the domain walls that separate regions of different orientations of electrical polarisation within the same ferroelectric band-insulator, are not nearly so well-developed. Addressing this disparity, we herein report magnetoresistance in approximately conical 180° charged domain walls, which occur in partially switched ferroelectric thin film single crystal lithium niobate. This system is ideal for such measurements: firstly, …


Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar 2022 California Polytechnic State University, San Luis Obispo

Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar

Physics

The rising interest in quantum computing has led to new quantum systems being developed and researched. Among these are trapped neutral atoms which have several desirable features and may be configured and operated on using lasers in an optical lattice. This work describes the development of a new data acquisition system for use in tuning lasers near the precise hyperfine transition frequencies of Rb 87 atoms, a crucial step in the functionality of a neutral atom trap. This improves on previous implementations that were deprecated and limited in laser frequency sweep range. Integration into the experiment was accomplished using an …


Symmetries, Zero Modes And Light Transport In Non-Hermitian Photonics, Jose David Hernandez Rivero 2022 The Graduate Center, City University of New York

Symmetries, Zero Modes And Light Transport In Non-Hermitian Photonics, Jose David Hernandez Rivero

Dissertations, Theses, and Capstone Projects

We approach some fundamental aspects of photonic dissipative systems treated by a non-Hermitian theory. Inspired by the possibilities provided by some major non-Hermitian symmetries, we study systematically the properties of the novel pseudochirality, pseudo-anti-Hermiticity, and supersymmetry. We analyze other aspect of photonics, the zero mode, which has a profound connection to non-Hermitian physics. We propose a scheme to realize a zero mode that exists even in the absence of symmetries. Finally, we approach light transport in non-Hermitian photonic systems, where the introduction of gain and loss can modify drastically the propagation speed of wavepackets.


External Beam Alignment System For Quantitative Proton Induced Gamma-Ray Emission (Pige) Spectroscopy, Elias Ottens 2022 Union College - Schenectady, NY

External Beam Alignment System For Quantitative Proton Induced Gamma-Ray Emission (Pige) Spectroscopy, Elias Ottens

Honors Theses

The effects of pollution on the ecosystem are paramount in our society, permeating air, soil, and drinking water. One contaminant of concern is per- and polyfluoroalkyl substances (PFAS), also referred to as "forever chemicals", which contains fluorine (F), a potentially harmful element to humans. To investigate pollution in the environment, it is necessary to make accurate measurements of the distribution and concentrations of these PFAS chemicals. To do this, soil samples are collected and analyzed using Particle Induced Gamma-ray Emission (PIGE) via the Union College Ion Beam Analysis Laboratory's (UCIBAL) particle accelerator. A 2.2 MeV proton beam comes into contact …


Feasibility Of Obtaining Surface Layer Moisture Flux Using An Ir Thermometer, Steven T. Fiorino, Lance Todorowski, Jaclyn Schmidt, Yogendra Raut, Jacob Margraf 2022 Air Force Institute of Technology

Feasibility Of Obtaining Surface Layer Moisture Flux Using An Ir Thermometer, Steven T. Fiorino, Lance Todorowski, Jaclyn Schmidt, Yogendra Raut, Jacob Margraf

Faculty Publications

This paper evaluates the feasibility of a method using a single hand-held infrared (IR) thermometer and a mini tower of wet and dry paper towels to psychometrically obtain surface layer temperature and moisture gradients and fluxes. Sling Psychrometers have long been standard measuring devices for quantifying the thermodynamics of near-surface atmospheric gas–vapor mixtures, specifically moisture parameters. However, these devices are generally only used to measure temperature and humidity at one near-surface level. Multiple self-aspirating psychrometers can be used in a vertical configuration to measure temperature and moisture gradients and fluxes in the first 1–2 m of the surface layer. This …


Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne 2022 Technological University Dublin

Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne

Articles

Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review …


Lifetime Measurement Of The Xi_C^+ Using Belle Ii Monte Carlo, Paul Gebeline 2022 University of Mississippi

Lifetime Measurement Of The Xi_C^+ Using Belle Ii Monte Carlo, Paul Gebeline

Honors Theses

This analysis uses simulated data from the Belle II experiment to measure the lifetime of the Xi_c^+ baryon. Three different decay modes are investigated to explore the feasibility and accuracy of such measurements at Belle II. The Xi_c^+ lifetime is measured using one of these modes after reducing backgrounds from sources other than the decay of interest. The final result is 464 +/- 15 fs, which is consistent with the expected result of 442 fs within uncertainty. This result shows that Belle II can make competitive measurements of particle properties and decays.


Structural And Spectroscopic Analysis For Silver Bulk And Nanoparticles, Hajir M. Fadhil, Khaleel I. Hassoon, Hyder A. Salih 2022 Department of Applied Science, University of Technology, Baghdad, Iraq.

Structural And Spectroscopic Analysis For Silver Bulk And Nanoparticles, Hajir M. Fadhil, Khaleel I. Hassoon, Hyder A. Salih

Karbala International Journal of Modern Science

In this research work, a pulsed Nd-YْAG laser having a wavelength of 1064 nm and energy (400-700 mJ (has been utilized as a source in an induced breakdown spectroscopy (LIBS) experiment to determine the density of electron and the tem-perature of Ag-plasma. Two forms of silver (as a bulk and as a compressed nano powder) have been used as targets in the LIBSs setup. The aim of the present work is to study the impact of target properties and laser energy on the plasma fea-tures formed by the interaction between a pulsed laser and these two forms of silver. The …


Alkali Linewidths Under High Temperatures And Pressures Of 3he, Michael Parker 2022 William & Mary

Alkali Linewidths Under High Temperatures And Pressures Of 3he, Michael Parker

Undergraduate Honors Theses

Current research at Thomas Jefferson National Accelerator Facility is being conducted to study the spin structure of the neutron through collisions with polarized 3He nuclei. The helium is contained in high pressure glass vessels (called cells) along with nitrogen, rubidium, and potassium. To deduce the spin structure from collisions, we need to know the precise number density of 3He in the cell. The process of polarizing 3He through spin-exchange optical pumping requires nitrogen and alkali metal. We can use the absorption linewidths of rubidium and potassium to more accurately determine the density of helium. Throughout my research, I collected absorption …


An Atomic Magnetometer Based On Nonlinear Magneto-Optical Polarization Rotation, Jiahui Li 2022 William & Mary

An Atomic Magnetometer Based On Nonlinear Magneto-Optical Polarization Rotation, Jiahui Li

Undergraduate Honors Theses

Magnetometers with high precision and accuracy have wide applications across various areas. We are developing an atomic magnetometer based on nonlinear magneto-optical rotation (NMOR). The magnetometer measures the polarization rotation of a light field, which is proportional to the magnetic field strength. However, such a magnetometer usually has a limited operation range and stops working for fields stronger than the Earth's magnetic field. To overcome this shortage, we implement frequency and amplitude modulation that induces side frequencies in the Fourier space which allows us to measure strong magnetic fields, up to 200 mG. We have achieved 60 pT sensitivity for …


Digital Commons powered by bepress