Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

1,321 Full-Text Articles 2,103 Authors 233,675 Downloads 91 Institutions

All Articles in Materials Chemistry

Faceted Search

1,321 full-text articles. Page 1 of 48.

Tumor-Targeting Fluorinated Phthalocyanines For Theranostic Applications, Erik Nathaniel Carrión 2018 Seton Hall University

Tumor-Targeting Fluorinated Phthalocyanines For Theranostic Applications, Erik Nathaniel Carrión

Seton Hall University Dissertations and Theses (ETDs)

Hydrocarbon-based therapeutics and imaging agents are prone to chemical oxidation and degradation resulting in loss of activity and limited functional utility. Thus, more material is required to achieve long-lasting therapeutic effects. Phthalocyanines (Pcs) and their metal complexes (PcMs) can be utilized as prodrugs requiring only renewable energy resources namely, air and light, for cancer therapy and diagnostic (theranostic) applications related to photodynamic therapy (PDT). Replacement of labile C-H bonds in the Pc scaffold with a combination of fluoro and perfluoroisopropyl groups has resulted in a stable yet reactive oxidation catalyst of biological significance and importance. For example, F64PcZn ...


Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers 2018 The University of Southern Mississippi

Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers

Dissertations

Delaminated montmorillonite (MMT) clay/ maleic anhydride grafted LLDPE nanocomposite multilayer films with alternating layers of LDPE were produced through multilayer co-extrusion. The MMT concentration within the nanocomposite layers was increased through annealing the films in the melt due to a mismatch in interdiffusion rates of the polymer layers. Analysis of the nanocomposite layers upon annealing revealed that the platelets impinged upon one another resulting in significant improvement in oxygen barrier in the multilayer system, exceeding the results of bulk nanocomposites.

Model analysis demonstrated that increasing the nanoplatelet aspect ratio or initial concentration in the filled layers would lead to even ...


Workflows For X-Ray And Neutron Interferometry/Tomography As Applied To Additive Manufacturing, Jumao Yuan 2018 Louisiana State University and Agricultural and Mechanical College

Workflows For X-Ray And Neutron Interferometry/Tomography As Applied To Additive Manufacturing, Jumao Yuan

LSU Doctoral Dissertations

Grating-based interferometry/tomography is being rapidly developed for non-destructive evaluation of additive manufacturing test articles. An application requiring an efficient workflow is extremely necessary for stress and fatigue testing samples.

At present, scientific workflows play an important role for computational experiments in additive manufacturing 3D printing and interferometry/tomography imaging analysis. A clear workflow template allows scientists to process experiments easier and faster. Work flow library grows, but to find an appropriate workflow for their task is challenging. In our research, there are mainly three portions in the workflow, interferometry analysis, image reconstruction and 3D visualization. Currently, the hierarchy of ...


Use Of Bioadvantaged Materials For Use In Bituminous Modification, Conglin Chen, Joseph H. Podolsky, Nacú B. Hernández, Austin Hohmann, R. Christopher Williams, Eric W. Cochran 2018 Iowa State University

Use Of Bioadvantaged Materials For Use In Bituminous Modification, Conglin Chen, Joseph H. Podolsky, Nacú B. Hernández, Austin Hohmann, R. Christopher Williams, Eric W. Cochran

Eric W. Cochran

Historically, the use of “green” materials around the world has been limited due to their higher production costs when compared to petrochemical derived materials. However, due to the recent volatility and increasing price of petroleum derivatives, there is a growing demand for the use of environmentally friendly materials. One of the most commonly used materials for bitumen modification are poly(styrene-block-butadiene-block-styrene) (SBS) type polymers. Recently, Iowa State University Chemical Engineering Department was able to synthetize thermoplastic elastomers using acrylated epoxidized soybean oil (AESO), a bioadvantaged replacement of butadiene, and styrene with the use of controlled radical polymerization techniques. Initial rheological ...


Synthesis And Functionalization Of Virus-Mimicking Cationic Block Copolymers With Pathogen-Associated Carbohydrates As Potential Vaccine Adjuvants, J. R. Adams, M. Goswami, N. L.B. Pohl, Surya K. Mallapragada 2018 Iowa State University

Synthesis And Functionalization Of Virus-Mimicking Cationic Block Copolymers With Pathogen-Associated Carbohydrates As Potential Vaccine Adjuvants, J. R. Adams, M. Goswami, N. L.B. Pohl, Surya K. Mallapragada

Surya K. Mallapragada

We report the synthesis of a family of amphiphilic pentablock polymers with different cationic blocks and with controlled architectures as potential vaccine carriers for subunit vaccines. The temperature and pH-dependent micellization and gelation of these pentablock copolymers can provide a depot for sustained protein and gene delivery. The amphiphilic central triblock promotes cellular endocytosis, good gene delivery and has been used effectively as a vaccine adjuvant. The pentablock copolymer outer blocks condense DNA spontaneously as a result of electrostatic interactions for sustained combinational therapy. This family of polymers with different cationic groups was evaluated based on DNA complexation-ability and cytotoxicity ...


Abnormal Phase Transition Between Two-Dimensional High-Density Liquid Crystal And Low-Density Crystalline Solid Phases, Wenbin Li, Longjuan Kong, Baojie Feng, Huixia Fu, Hui Li, Xiao Cheng Zeng, Kehui Wu, Lan Chen 2018 University of Chinese Academy of Sciences

Abnormal Phase Transition Between Two-Dimensional High-Density Liquid Crystal And Low-Density Crystalline Solid Phases, Wenbin Li, Longjuan Kong, Baojie Feng, Huixia Fu, Hui Li, Xiao Cheng Zeng, Kehui Wu, Lan Chen

Xiao Cheng Zeng Publications

Some two-dimensional liquid systems are theoretically predicted to have an anomalous phase transition due to unique intermolecular interactions, for example the first-order transition between two-dimensional high-density water and low-density amorphous ice. However, it has never been experimentally observed, to the best of our knowledge. Here we report an entropy-driven phase transition between a high-density liquid crystal and low-density crystalline solid, directly observed by scanning tunneling microscope in carbon monoxide adsorbed on Cu(111). Combined with first principle calculations, we find that repulsive dipole–dipole interactions between carbon monoxide molecules lead to unconventional thermodynamics. This finding of unconventional thermodynamics in two-dimensional ...


Modification Of Wheat Gluten For Improvement Of Binding Capacity With Keratin In Hair, Shukun Wang, Danyang Meng, Sisi Wang, Zhong Zhang, Ruijin Yang, Wei Zhao 2018 Jiangnan University

Modification Of Wheat Gluten For Improvement Of Binding Capacity With Keratin In Hair, Shukun Wang, Danyang Meng, Sisi Wang, Zhong Zhang, Ruijin Yang, Wei Zhao

Faculty Publications in Food Science and Technology

In this study, enzymatic hydrolysis and cationization with epoxypropyldodecyldimethylammonium chloride of wheat protein, an economic protein complex containing great amount of disulfide bonds, were conducted to improve properties such as solubility and disassociation behaviour for recovery of damaged hair when used in shampoo. The optimal conditions for enzymatic hydrolysis were pH 8.2, 55°C with Alcalase for 60min. After the selected hydrolysis, the degree of hydrolysis, nitrogen solubility index, foaming capacity index, foam stability index, emulsifying activity index and emulsion stability index of hydrolysate with 58.71% of shortchain peptides (less than 1000 Da) were 8.81%, 39.07 ...


Carbon Quantum Dots: Bridging The Gap Between Chemical Structure And Material Properties, Timothy J. Pillar-Little Jr. 2018 University of Kentucky

Carbon Quantum Dots: Bridging The Gap Between Chemical Structure And Material Properties, Timothy J. Pillar-Little Jr.

Theses and Dissertations--Chemistry

Carbon quantum dots (CQDs) are the latest generation of carbon nanomaterials in applications where fullerenes, carbon nanotubes, and graphene are abundantly used. With several attractive properties such as tunable optical property, edge-functionalization, and defect-rich chemical structure, CQDs have the potential to revolutionize optoelectronics, electro- and photocatalysis, and biomedical applications. Chemical modifications through the addition of heteroatoms, chemical reduction, and surface passivation are found to alter the band gap, spectral position, and emission pathways of CQDs. Despite extensive studies, fundamental understanding of structure-property relationship remains unclear due to the inhomogeneity in chemical structure and a complex emission mechanism for CQDs.

This ...


Light-Harvesting And Light-Responsive Materials For Optoelectronic And Biological Applications, youngju bae 2018 University of Massachusetts Amherst

Light-Harvesting And Light-Responsive Materials For Optoelectronic And Biological Applications, Youngju Bae

Doctoral Dissertations

In photodynamic therapy, several critical standards are required of photosensitizers including high singlet oxygen quantum yield, biocompatibility in dark, and long term photochemical stability. In addition, current PDT systems lack active targeting strategies to tumor cells, and instead mainly rely on the natural distribution of PS in the body following injection and application of near-infrared light treatment in the tumor region. This thesis describes a series of BODIPY-based molecules that were designed, synthesized and studied as photosensitizers with high singlet oxygen generation capacity through utilizing the heavy atom effect. Additionally, aqueous solubility and active targeting capability were introduced by photosensitizer ...


Interfacial Corrosion Of Copper And The Formation Of Copper Hydroxychloride, Mary Teague, Shengxi Li, Hongbo Cong 2018 The University of Akron

Interfacial Corrosion Of Copper And The Formation Of Copper Hydroxychloride, Mary Teague, Shengxi Li, Hongbo Cong

Honors Research Projects

Electrical circuitry is an industry, among many others, heavily using the element of copper. Ensuring the mechanical integrity of Cu is crucial, especially in salt environments, for the multifaceted composition of circuits. 4N NaCl solution (equilibrium concentration in ~84% RH) simulated this three-phase system. Rectangular Cu samples were partially immersed in both ambient and continuous lab air sparging atmospheres to understand waterline corrosion of the metal. Open circuit potentials (OCP) were continuously taken during the immersion testing for a maximum of 5 days. A scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), Raman spectroscopy, and 3-D ...


Recycled Sm-Co Bonded Magnet Filaments For 3d Printing Of Magnets, Helena A. Khazdozian, J. Sebastian Manzano, Kinjal Gandha, Igor I. Slowing, Ikenna C. Nlebedim 2018 Ames Laboratory

Recycled Sm-Co Bonded Magnet Filaments For 3d Printing Of Magnets, Helena A. Khazdozian, J. Sebastian Manzano, Kinjal Gandha, Igor I. Slowing, Ikenna C. Nlebedim

Ames Laboratory Accepted Manuscripts

Recycling of rare earth elements, such as Sm and Nd, is one technique towards mitigating long-term supply and cost concerns for materials and devices that depend on these elements. In this work recycled Sm-Co powder recovered from industrial grinding swarfs, or waste material from magnet processing, was investigated for use in preparation of filament for 3D printing of bonded magnets. Recycled Sm-Co powder recovered from swarfs was blended into polylactic acid (PLA). Up to 20 vol.% of the recycled Sm-Co in PLA was extruded at 160°C to produce a filament. It was demonstrated that no degradation of magnetic properties ...


Physicochemical, Spectroscopic Properties, And Diffusion Mechanisms Of Small Hydrocarbon Molecules In Mof-74-Mg/Zn: A Quantum Chemical Investigation, Gemechis Degaga 2018 Michigan Technological University

Physicochemical, Spectroscopic Properties, And Diffusion Mechanisms Of Small Hydrocarbon Molecules In Mof-74-Mg/Zn: A Quantum Chemical Investigation, Gemechis Degaga

Dissertations, Master's Theses and Master's Reports

In petroleum refining industries, the fracturing process allows for the cracking of long-chain hydrocarbons into a mixture of small olefin and paraffin molecules that are then separated via the energetically and monetarily demanding cryogenic distillation process. In an attempt to mitigate both energetic and capital consumptions, selective sorption of light hydrocarbons by tunable sorbents, such as metal-organic frameworks (MOFs), appears to be the most promising alternative for a more efficient gas separation process. MOFs are novel porous materials assembled from inorganic bricks connected by organic linkers. From a crystal engineering stand point, MOFs are advantageous in creating a range of ...


Characterization Of Tetraethyl Orthosilicate-Based Dynamic Hydrogels For Use As Reversible 3-D Cell Culture Matrices, Krisitan Stipe 2018 University of Montana, Missoula

Characterization Of Tetraethyl Orthosilicate-Based Dynamic Hydrogels For Use As Reversible 3-D Cell Culture Matrices, Krisitan Stipe

Graduate Student Theses, Dissertations, & Professional Papers

No abstract provided.


Adsorbed Gas Behaviour And Guest-Host Interactions In Ultramicroporous Metal-Organic Frameworks, Bligh Desveaux 2017 The University of Western Ontario

Adsorbed Gas Behaviour And Guest-Host Interactions In Ultramicroporous Metal-Organic Frameworks, Bligh Desveaux

Electronic Thesis and Dissertation Repository

Metal-organic frameworks (MOFs) are a class of porous materials that have attracted much attention due to their large surface areas, high tunability and their high selectivity for gas adsorption applications. In this work, solid-state nuclear magnetic resonance (SSNMR) experiments and single crystal X-ray diffraction (SCXRD) experiments are used to investigate carbon dioxide adsorption within the ultramicroporous MOFs SIFSIX-3-Zn (Chapter 2) and ZnAtzOx. (Chapter 3). Analysis finds that the CO2 SIFSIX-3-Zn undergoes wobbling motions with a low temperature dependence, and in ZnAtzOx undergoes wobbling and hopping motions with a low temperature dependence. SCXRD is used to precisely determine the CO ...


Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt 2017 University of Kentucky

Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt

Chemical and Materials Engineering Faculty Publications

A novel crosslinker [4,4′-dihydroxybiphenyl diacrylate (44BDA)] was developed, and a series of temperature-responsive hydrogels were synthesized through free radical polymerization of N-isopropylacrylamide (NIPAAm) with 44BDA. The temperature-responsive behavior of the resulting gels was characterized by swelling studies, and the lower critical solution temperature (LCST) of the hydrogels was characterized through differential scanning calorimetry. Increased content of 44BDA led to a decreased swelling ratio and shifted the LCST to lower temperatures. These novel hydrogels also displayed resiliency through multiple swelling–deswelling cycles, and their temperature responsiveness was reversible. The successful synthesis of NIPAAm-based hydrogels crosslinked with 44BDA has ...


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin 2017 University of Louisville

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis ...


Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough 2017 University of Tennessee, Knoxville

Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough

Doctoral Dissertations

Diamond films are used at the Spallation Neutron Source (SNS) as the primary charge exchange foils (i.e., stripper foils) of the accelerated 1 GeV (Gigaelectron volts) hydride ions. The most common type of film used is a nanocrystalline diamond film, typically 17 mm x 45 mm (millimeter) with an aerial density of 350 μg/cm2 (microgram per square centimeter). The diamond film is deposited on a corrugated silicon substrate using plasma-assisted chemical vapor deposition. After the growth of the diamond film, 30 mm of the silicon substrate is etched away, leaving a freestanding diamond foil with a silicon ...


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki 2017 University of New Mexico - Main Campus

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes ...


Gamma-Radiation Induced Corrosion Of Alloy 800, Mojtaba Momeni 2017 The University of Western Ontario

Gamma-Radiation Induced Corrosion Of Alloy 800, Mojtaba Momeni

Electronic Thesis and Dissertation Repository

This thesis presents a newly developed mechanism and predictive model for the corrosion of Alloy 800. The Fe-Cr-Ni Alloy (Incoloy 800) is mainly used for steam generator (SG) tubing in CANDU and PWR reactors and is a candidate material for the proposed Canadian Supercritical Water Reactor (SCWR) in which it will be exposed to extreme conditions of high radiation flux and large temperature gradients. The influence of gamma radiation and water chemistry conditions on the corrosion behaviour of Alloy 800 are studied in this work. Ionizing radiation creates reducing (•eaq, •H, •O2-) and oxidizing radiolysis (•OH, H2 ...


Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze 2017 Tbilisi State University

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze

Faculty Publications, Chemistry

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak (ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic field at the temperature Т<Тс with subsequent slow warming up to room temperature with invariance of the applied field. The attenuation peak height depended on the preliminaryorientation (before cooling) of the samples θ in the measured permanent magnetic field Н. On the one hand, it is well known that, after the FC procedure and subsequent slow warming up, at the temperatures close to the critical temperature Тс, the attenuation peak associated with “melting” of the Abrikosov frozen vortex structure and its disappearance at Т >Тс is detected in monophase samples. At the same time, in most multiphase bismuth HTCS samples, synthesized using solar energy and superfast quenching of the melt, the attenuation peak with the maximum at Т≈200 К was ...


Digital Commons powered by bepress