Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

977 Full-Text Articles 1710 Authors 171456 Downloads 74 Institutions

All Articles in Materials Chemistry

Faceted Search

977 full-text articles. Page 1 of 33.

Graphene Quantum Dots Electrochemistry And Development Of Sensitive Electrochemical Biosensor [Hybrid Poster 2-B], Tyler Smith, Alexander Banaszak 2016 Western Kentucky University

Graphene Quantum Dots Electrochemistry And Development Of Sensitive Electrochemical Biosensor [Hybrid Poster 2-B], Tyler Smith, Alexander Banaszak

Posters-at-the-Capitol

Graphene quantum dots (GQDs) are zero-dimensional material derived from graphene derivatives with characteristics from the structure of graphene with quantum confinement and edge effects possessing unique properties. Intense research activity in GQDs is attributed to their novel physical-chemical phenomena arising from the sp2-bonded carbon core surrounded with edge functional moieties. In this work, GQDs of optimal 5-7 nm size are investigated for their fundamental electrochemical properties and use in electrochemical sensing including enzyme-based glucose biosensor. Glucose oxidase (GOx) was immobilized on GQDs modified glassy carbon (GC) and the UV-Vis absorption and fluorescence spectroscopy, electron microscopy, cyclic and ...


Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 2-A], Alexander Banaszak, Tyler Smith 2016 Western Kentucky University

Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 2-A], Alexander Banaszak, Tyler Smith

Posters-at-the-Capitol

Raman scattering signal enhancement that uses graphene as support, graphene-enhanced Raman scattering (GERS), is a recent phenomenon. It can produce clean and reproducible Raman signals of chemical molecules with significantly enhanced signal intensity in contrast to traditional surface- (SERS) and tip- enhanced Raman scattering (TERS) techniques. While enhancement in SERS and TERS arise due to the electromagnetic mechanism, GERS also relies on a chemical mechanism and therefore shows unique molecular sensitivity and selectivity. In this work, we developed graphene materials decorated with noble metal (silver and gold) nanoparticles for detection of different chemical molecules e.g. methylene blue (MB) and ...


Solvothermal Preparation And Characterization Of Superstructures Of Nanoscopic Cds And Cdse, Tetyana Levchenko 2016 The University of Western Ontario

Solvothermal Preparation And Characterization Of Superstructures Of Nanoscopic Cds And Cdse, Tetyana Levchenko

Electronic Thesis and Dissertation Repository

Micrometer-sized superparticles, self-assembled from metallic or semiconducting nanoclusters, can be used as convenient building blocks for preparing functional materials, utilizing the electronic and photophysical properties resulting from the quantum confinement as well as from the coupling between individual nanoscopic constituents.

This research aimed at developing a novel approach utilizing the conversion of a cadmium phenylchalcogenolate precursor (Me4N)2[Cd(EPh)4] (where E = S or Se) under solvothermal conditions for the preparation of nanoscopic CdE, including both crystalline superlattices of large discrete nanoclusters and superstructures with more complex morphology. In particular, 3D cubic superlattices of molecular CdS nanoclusters ...


Effects Of Sintering Parameters On The Microstructure And Tensile Properties Of In Situ (Ti5si3 + Tibw)/Ti6al4v Composites With Two-Scale Network Architecture, Yang Jiao, L. J. Huang, L. Geng 2016 Harbin Institute of Technology

Effects Of Sintering Parameters On The Microstructure And Tensile Properties Of In Situ (Ti5si3 + Tibw)/Ti6al4v Composites With Two-Scale Network Architecture, Yang Jiao, L. J. Huang, L. Geng

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Effect Of Surface Treatment On Liquid Adhesion Inside 3-D Structures, Madani A. Khan, Jeffrey Alston, Andrew Guenthner, Jacob Zavala 2016 The City College of New York

Effect Of Surface Treatment On Liquid Adhesion Inside 3-D Structures, Madani A. Khan, Jeffrey Alston, Andrew Guenthner, Jacob Zavala

STAR (STEM Teacher and Researcher) Presentations

This study explores the relationship between chemical surface treatments on the interior of glass tubes and their resistance to fluid flow. By treating the interior of the tubes with functional silanes we can decrease or increase the interaction of the tube walls with the fluid column, which translates to changes in fluid column height for a given pressure differential. Resistance to fluid flow is quantified by using the tubes as integral parts of a barometric pressure column and measuring the changes in column height as the fluid is pulled into the tube by a set pressure differential. The barometric pressure ...


Dealloying Behavior Of Nico And Nicocu Thin Films, Benjamin Peecher, Jennifer R. Hampton 2016 Hope College

Dealloying Behavior Of Nico And Nicocu Thin Films, Benjamin Peecher, Jennifer R. Hampton

Faculty Publications

Porous metals and alloys, such as those fabricated via electrochemical dealloying, are of interest for a variety of energy applications, ranging from their potential for enhanced catalytic behavior to their use as high surface area supports for pseudocapacitor materials. Here, the electrochemical dealloying process was explored for electrodeposited binary NiCo and ternary NiCoCu thin films. For each of the four different metal ratios, films were dealloyed using linear sweep voltammetry to various potentials in order to gain insight into the evolution of the film over the course of the linear sweep. Electrochemical capacitance, scanning electron microscopy, and energy dispersive X-ray ...


Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama 2016 Western Kentucky University

Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama

Masters Theses & Specialist Projects

Various synthetic methods have been developed to produce metal nanostructures including copper and iron nanostructures. Modification of nanoparticle surface to enhance their characteristic properties through surface functionalization with organic ligands ranging from small molecules to polymeric materials including organic semiconducting polymers is a key interest in nanoscience. However, most of the synthetic methods developed in the past depend widely on non-aqueous solvents, toxic reducing agents, and high temperature and high-pressure conditions. Therefore, to produce metal nanostructures and their nanocomposites with a simpler and greener method is indeed necessary and desirable for their nano-scale applications. Hence the objective of this thesis ...


Probing The Structure And Photophysics Of Porphyrinoid Systems For Functional Materials, Christopher D. Farley 2016 The Graduate Center, City University of New York

Probing The Structure And Photophysics Of Porphyrinoid Systems For Functional Materials, Christopher D. Farley

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

Porphyrins (Pors) and their many cousins, including phthalocyanines (Pcs), corroles (Cors), subphthalocyanines (SubPcs), porphyrazines (Pzs), and naphthalocyanines (NPcs), play amazingly diverse roles in biological and non-biological systems because of their unique and tunable physical and chemical properties. These compounds, collectively known as porphyrinoids, can be employed in any number of functional devices that have the potential to address the challenges of modern society. Their incorporation into such devices, however, depends on many structural factors that must be well understood and carefully controlled in order to achieve the desired behavior. Self-assembly and self-organization are key processes for developing these new technologies ...


Photodynamic Killing Of Human Cancer Cells With Smart Photosensitizer Materials And An Endoscopic Implement For Singlet Oxygen Delivery, Mihaela N. Minnis 2016 The Graduate Center, City University of New York

Photodynamic Killing Of Human Cancer Cells With Smart Photosensitizer Materials And An Endoscopic Implement For Singlet Oxygen Delivery, Mihaela N. Minnis

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

The thesis describes progress on probe tips for a microoptic device for the precise delivery of the components necessary for photodynamic therapy (PDT) in a highly localized and controllable fashion. The thesis also summarizes results of a photosensitized oxidation study. The work focused on i) developing a photoactive fluoropolymer surface that will release sensitizer drug molecule for use in PDT, ii) designing new probe tips surfaces for use as sensitizer support for a microoptic PDT device, iii) exploring strategies for covalent attachment of sensitizers and model compounds to Teflon/PVA surfaces with the aim of being coupled with our microoptic ...


Fabricating And Characterizing Chalcogenide Thin Films As Light Absorbing Layers In Solar Cells, Daniel Vaccarello 2016 The University of Western Ontario

Fabricating And Characterizing Chalcogenide Thin Films As Light Absorbing Layers In Solar Cells, Daniel Vaccarello

Electronic Thesis and Dissertation Repository

Solar cell development has been a focus in energy research, with light-absorbing layers as the key theme. Copper indium disulphide (CuInS2) and copper zinc tin sulphide (Cu2ZnSnS4 or CZTS) have energy band gaps that are optimal for solar energy conversion. New preparation methods have been developed with practicality, safety, and low costs in mind. The one-pot method developed in this thesis group has been utilized to create nanocrystals that can be used to absorb light and generate current. The use of low temperatures and minimalistic reaction conditions has led to the production of CIS and CZTS ...


Koh Etching Of (100) Si Wafer, No 2, Inayat Bajwa 2016 Quattrone Nanofabrication Facility

Koh Etching Of (100) Si Wafer, No 2, Inayat Bajwa

Protocols and Reports

This report describes KOH etching of (100) Si wafer through a hard mask of silicon oxide, and reveals that the scattered etch rate is ascribed to the etch rates of the different crystal planes exposed during the etching.


Porous Layers Composed Of Oxide Crystallites Formed By The Combination Of Laser Ablation And Anodization Of Metal, Abbie S. Ganas, Dmitry A. Znamensky, Nahúm Méndez Alba, José Luis Hernández-Pozos, Kurt W. Kolasinski 2016 West Chester University of Pennsylvania

Porous Layers Composed Of Oxide Crystallites Formed By The Combination Of Laser Ablation And Anodization Of Metal, Abbie S. Ganas, Dmitry A. Znamensky, Nahúm Méndez Alba, José Luis Hernández-Pozos, Kurt W. Kolasinski

Kurt W. Kolasinski

No abstract provided.


Assembly Of Nucleic Acid-Based Nanoparticles By Gas-Liquid Segmented Flow Microfluidics, Matthew L. Capek, Ross VerHeul, David H. Thompson 2016 Purdue University

Assembly Of Nucleic Acid-Based Nanoparticles By Gas-Liquid Segmented Flow Microfluidics, Matthew L. Capek, Ross Verheul, David H. Thompson

The Summer Undergraduate Research Fellowship (SURF) Symposium

The development of novel and efficient mixing methods is important for optimizing the efficiency of many biological and chemical processes. Tuning the physical and performance properties of nucleic acid-based nanoparticles is one such example known to be strongly affected by mixing efficiency. The characteristics of DNA nanoparticles (such as size, polydispersity, ζ-potential, and gel shift) are important to ensure their therapeutic potency, and new methods to optimize these characteristics are of significant importance to achieve the highest efficacy. In the present study, a simple segmented flow microfluidics system has been developed to augment mixing of pDNA/bPEI nanoparticles. This DNA ...


Density Functional Theory Based Electrolyte Design Formulation For Lithium-Sulfur Batteries, Cynthia Ly, Carolyn Sturges, Vijay Murugesan 2016 Richland School District 400

Density Functional Theory Based Electrolyte Design Formulation For Lithium-Sulfur Batteries, Cynthia Ly, Carolyn Sturges, Vijay Murugesan

STAR (STEM Teacher and Researcher) Presentations

Lithium-ion (Li-ion) batteries are commonly used in portable electronics such as cellphones and laptops. Most Li-ion batteries operate on intercalation principle with typical theoretical specific energy of 400-600 (Wh/Kg). There is great scientific interest in lithium-sulfur (Li-S) batteries as a possible successor of traditional Li-ion batteries because Li-S holds the potential of being a very powerful (1550 Wh/kg theoretical specific energy) yet very cost-efficient battery (due the abundance and inexpensiveness of sulfur). However, one major problem in Li-S battery research is the polysulfide “shuttle phenomenon”, which is the shuttling of polysulfide species due to the dissolution of sulfide ...


Using In Situ Liquid Single Photon Ionization Mass Spectrometry (Spi-Ms) To Probe Lithium Polysulfide Electrolyte In Motion, Aala M. Al Hasan, Jiachao Yu, Juan Yao, Vijayakumar Murugesan, Manjula Nandasiri, Xiao-Ying Yu 2016 University of Houston

Using In Situ Liquid Single Photon Ionization Mass Spectrometry (Spi-Ms) To Probe Lithium Polysulfide Electrolyte In Motion, Aala M. Al Hasan, Jiachao Yu, Juan Yao, Vijayakumar Murugesan, Manjula Nandasiri, Xiao-Ying Yu

STAR (STEM Teacher and Researcher) Presentations

The solid-liquid (s-l) interface is the most common interface encountered in electrochemical systems. The s-l interface has wide applications in energy storage, catalysis, and material sciences. In situ studies of chemical reactions taking place on the s-l interfaces can further our understanding of electron transfer and link to real-world device functions under challenging conditions. Direct probing of the solid electrode and liquid electrolyte interface has been realized using a vacuum compatible electrochemical microfluidic reactor, system for analysis at the liquid vacuum interface (SALVI) with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Most recently, the electrochemical version of SALVI was integrated to ...


Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou 2016 CSULB

Calculating The Energy Barriers Required To Join Metal-Organic Framework Synthesis Intermediates With Non-Equilibrium Molecular Simulation, Marcus A. Tubbs, David Cantu, Roger Rousseau, Vassiliki-Alexandra Glezakou

STAR (STEM Teacher and Researcher) Presentations

Metal organic frameworks are synthetic porous materials with great capacity for adsorption of carbon dioxide and methane. They chemically appear as a chain-link fence with nodes of metal connected by organic linkers. The pores between the nodes define the characteristics of the material, allowing gas particles of specific size to pass through while blocking larger particulates. While there has been success in synthesizing small amounts of metal organic frameworks, the mechanistic details behind their assembly remain unknown. Understanding the synthesis mechanism is necessary to understand the kinetics involved and be able to produce this useful material on an industrial scale ...


Development Of Instrumentation For The Analysis Of Photoconductivity In Functional Materials, Brandon L. Chapman 9741174 2016 University of Tennessee, Knoxville

Development Of Instrumentation For The Analysis Of Photoconductivity In Functional Materials, Brandon L. Chapman 9741174

University of Tennessee Honors Thesis Projects

No abstract provided.


Correlation Of Polymer Performance And Hansen Solubility Parameters, Daniel Jobse Mania 2016 University of Southern Mississippi

Correlation Of Polymer Performance And Hansen Solubility Parameters, Daniel Jobse Mania

Master's Theses

Ready-to-use (RTU) grout is becoming more important to the finish and remodeling construction industry. Market research shows it is a fast-growing product that not only is creating its own space, but is beginning to supplant existing technology.

The original intent of this research was to investigate formulation parameters and how they affect grout performance. It was learned that particle size and oil absorption (OA) value are important filler properties that affect performance as much as adequate packing density and optimal pigment volume concentration (PVC) without going beyond critical PVC (CPVC).

Polymer architecture was also determined to be extremely important, but ...


Synthesis And Applications Of Lanthanide Sulfides And Oxides, Christopher Marin 2016 University of Nebraska-Lincoln

Synthesis And Applications Of Lanthanide Sulfides And Oxides, Christopher Marin

Student Research Projects, Dissertations, and Theses - Chemistry Department

This dissertation focuses on two of the key fields where lanthanides find ready application: as optically active materials with a focus on the lanthanide sulfides, and as catalytic materials with a focus on cerium oxide.

The lanthanide sulfides have attracted considerable interest for their potential as solar energy conversion materials, pigments, infrared window materials, and phosphor host media. However, applications of these materials remain limited due to their synthetic difficulty along with their not well understood properties compounded by both their difficulty in manufacturing as well as in simulating largely due to the need to take into account f-shell electrons ...


The Corrosion Of Carbon Steel Under Deep Geologic Nuclear Waste Disposal Conditions, Shannon L.W. Hill 2016 The University of Western Ontario

The Corrosion Of Carbon Steel Under Deep Geologic Nuclear Waste Disposal Conditions, Shannon L.W. Hill

Electronic Thesis and Dissertation Repository

The proposed disposal scenario for high-level nuclear waste (spent fuel) in Canada is emplacement within a sealed, deep geological repository (DGR) located in either granitic rock or sedimentary clay. Disposal is based on a multi-barrier approach, with the primary barrier being a sealed container which could be either dual-walled with a copper shell over an inner carbon steel vessel for granitic rock or a single thick-walled steel container for sedimentary clay. This study focuses on the corrosion behaviour of A516 Gr70 carbon steel as well as the corrosion products formed in a variety of groundwater compositions and concentrations expected within ...


Digital Commons powered by bepress