Open Access. Powered by Scholars. Published by Universities.®

Polymer Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

969 Full-Text Articles 1,391 Authors 372,564 Downloads 107 Institutions

All Articles in Polymer Chemistry

Faceted Search

969 full-text articles. Page 1 of 41.

Carbon Dioxide Capture Potential Of Chitosan-Nanocrystalline Cellulose Aerogel Composite Materials: Synthesis, Functionalization, And Characterization, Victor Oghenekohwo 2023 American University in Cairo

Carbon Dioxide Capture Potential Of Chitosan-Nanocrystalline Cellulose Aerogel Composite Materials: Synthesis, Functionalization, And Characterization, Victor Oghenekohwo

Theses and Dissertations

The carbon dioxide capture technology has been established as an invaluable player in the current global efforts to allay the warming of the planet and climate change. In this connection, the study centers on the valorization of waste organic materials for the application described herein. The sorbents, sourced from a combination of by-products of food processing and agricultural residue waste products, viz. seafood waste and sugarcane bagasse, showed prospects for selective carbon dioxide capture, adsorbing up to 5.78 mg/g of the gas at 273 K and 2.82 mg/g at 298 K, as observed on the Micromeritic ...


Polymer Mimetics For Soil Modeling And Detection Of Biomarkers, Md Ragib Hasan 2022 Louisiana State University

Polymer Mimetics For Soil Modeling And Detection Of Biomarkers, Md Ragib Hasan

LSU Doctoral Dissertations

The population of the world is increasing day by day and is expected to reach 9.8 billion by the year 2050. The ever-increasing demand for agricultural products is putting an unprecedented strain on the world's soils as the human population continues to expand. Soil degradation caused by over-farming and the agrochemicals (fertilizers, pesticides, etc.) used in agriculture is a growing problem, although its causes remain murky. In addition, little is understood about the molecular-level interactions of substances that are subsequently introduced to soils, such as agricultural chemicals (ACs). Therefore, it is expected that these constraints may be circumvented ...


Thermal Degradation Of Erythritol, Sudheendra Gamoji 2022 California Polytechnic State University, San Luis Obispo

Thermal Degradation Of Erythritol, Sudheendra Gamoji

Physics

The Insulated Solar Electric Cooker (ISEC) is a double walled Aluminum pot with a resistive heater directly connected to a solar panel whose goal is to create and disseminate cheap solar cookers in rural areas that primarily rely on biomass for cooking. Phase Change Materials (PCMs) like Erythritol, a sugar substitute, take a tremendous amount of energy to melt, and when they solidify they release the energy. Through the use of PCMs, the ISECs will produce enough heat to cook food even after the sun sets. However, PCMs like Erythritol degrade over repeated heat exposure, so the purpose of this ...


Intracellular Delivery Of Therapeutic Biomolecules Through Versatile Polymer Nanotechnology, David C. Luther 2022 University of Massachusetts Amherst

Intracellular Delivery Of Therapeutic Biomolecules Through Versatile Polymer Nanotechnology, David C. Luther

Doctoral Dissertations

Advancing pharmaceutical technology has made it possible to treat diseases once considered ‘undruggable.’ Access to these new pharmaceutical targets is possible thanks to the advent of protein and nucleic acid therapeutics. Responses to the COVID-19 pandemic, as well as cutting-edge treatments for cancer and multiple sclerosis have centered on these biologic therapies, promising even greater value in the future. However, their utility is limited at a cellular level by inability to cross the plasma membrane. Nanocarrier technologies encapsulate therapeutics and facilitate uptake into the cell but are often trapped and degraded in endosomes. Arginine-functionalized gold nanoparticles (Arg-NPs) provide efficient, direct ...


Expanding The Polymer Zwitterion Library – Novel Phosphonium-Based Polymer Zwitterions And Analogous Structures, Marcel U. Brown 2022 University of Massachusetts Amherst

Expanding The Polymer Zwitterion Library – Novel Phosphonium-Based Polymer Zwitterions And Analogous Structures, Marcel U. Brown

Doctoral Dissertations

This dissertation encompasses the synthesis, characterization and application of novel polymer zwitterions that significantly expand the library of available zwitterionic polymers. Their facile synthesis is facilitated by the preparation of a novel functional sultone precursor molecule, which can be ring-opened by commercially available phosphine, amine and sulfide nucleophiles, affording phosphonium, ammonium or sulfonium sulfonate monomers, respectively. Most notably, this work describes the invention of phosphonium-based polymer zwitterions, establishing a new class of zwitterionic polymer structures with unique solution and interfacial properties. Furthermore, the incorporation of these phosphonium sulfonates into block copolymer architectures with conventional polymer zwitterions, and the resulting switchable ...


Conformation Of The U12-U6atac Snrna Complex Of The Minor Spliceosome And Binding By Ntc-Related Protein Rbm22, Joanna Ciavarella 2022 The Graduate Center, City University of New York

Conformation Of The U12-U6atac Snrna Complex Of The Minor Spliceosome And Binding By Ntc-Related Protein Rbm22, Joanna Ciavarella

Dissertations, Theses, and Capstone Projects

Splicing of precursor messenger (pre-m)RNA is a critical process in eukaryotes in which the non-coding regions, called introns, are removed and coding regions, or exons, are ligated to form a mature mRNA. This process is catalyzed by the spliceosome, a multi-mega Dalton ribonucleoprotein complex assembled from five small nuclear ribonucleoproteins (snRNP) in the form of small nuclear (sn)RNA-protein complexes (U1, U2, U4, U5 and U6) and >100 proteins. snRNA components catalyze the two transesterification reactions while proteins perform critical roles in assembly and rearrangement. U2 and U6 snRNAs are the only snRNAs directly implicated in catalyzing the splicing ...


How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge 2022 University of Tennessee, Knoxville

How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge

Doctoral Dissertations

Associating polymer is a special kind of polymer possessing transient reversible bonds in addition to the conventional covalent bonds. The reversible bonds provide unique dynamics and fascinating viscoelastic properties, resulting in attractive applications for these polymers, such as self-healing and shape memory materials. Despite many years of studies, the understanding of dynamics of polymers with reversible bonds, especially on molecular level, is still in the rudimentary stage, preventing the rational design of the potential novel functional materials based on associating polymers. In this dissertation, we provide a detailed and quantitative understanding of the dynamics and viscoelastic properties of associating polymers ...


Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws 2022 University of Tennessee, Knoxville

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws

Doctoral Dissertations

Bottlebrush polymers are a class of highly branched polymers consisting of polymeric side chains that are densely grafted to a linear backbone. Their highly branched architecture results in surface enrichment across a broad range of materials. The goal of my research has been centered around the design of functional bottlebrush polymers and their use as surface active additives in blend films and coatings.

In the first chapter, we examine the segregation behavior of polystyrene bottlebrushes that are blended with linear polystyrene. We systematically vary the lengths of the bottlebrush backbone (Nb), side-chain (Nsc), and the linear matrix (Nm) in order ...


Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill 2022 East Tennessee State University

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are
(a) a one-piece base for the standard kit's (Martin-style) bracing,
(b) 277 Ladder-style bracing, and
(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes
(a) a nominal 24" x 18" x 3mm (0.118") Baltic birch plywood laser layout of
(1) the one-piece base with slots,
(2) pre-radiused and pre-scalloped vertical braces with tabs to ensure proper orientation and alignment, and
(3) various gages and jigs and
(b) a nominal 15" x 20" marking template.

The 'provided as is" CADD data is formatted for use on a Universal Laser Systems (ULS) laser cutter digital (CNC) device. Each CADD drawing is also provided in two (2) formats: Autodesk AutoCAD 2007 .DWG and .DXF R12. Users should modify and adapt the CADD data as required to fit their equipment. This CADD data set is released and distributed under a Creative Commons license; users are also encouraged to make changes o the data and share (with attribution) their designs with the worldwide acoustic guitar building community.


Bbt Side Mold Assy, Bill Hemphill 2022 East Tennessee State University

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds ...


Biomass Estimation Of Marine Biofilms On Plastic Surfaces, Kian Banihashemi, Fernando Javier Gil 2022 California Polytechnic State University, San Luis Obispo

Biomass Estimation Of Marine Biofilms On Plastic Surfaces, Kian Banihashemi, Fernando Javier Gil

Biological Sciences

Plastics have become a major source of marine pollution, which threatens food safety and quality, human health, and marine ecosystems. Due to the drastic negative effects of plastics in a marine environment, alternative biodegradable plastics are being generated that are more eco-friendly and have less environmental impact. Though some of these plastics are known to biodegrade, the process of degradation for bioplastics has not been heavily studied in a marine environment. This pilot project sought to both quantify the process of biodegradation and compare across different methods for effectiveness of biomass estimation, which serves as an indicator of biodegradation. Plastics ...


Nitro-Aromatic Polymers For Conversion-Style Battery Cathodic Materials, Brady P. Samuelson 2022 University of South Dakota

Nitro-Aromatic Polymers For Conversion-Style Battery Cathodic Materials, Brady P. Samuelson

Honors Thesis

The development of organic electrode materials in rechargeable batteries has seen a resurgence in recent decades. This spike in interest is mostly due to the increased investments in renewable energy sources, grid-scale energy storage, and the rapid transition to electric vehicles. Current lithium battery cathode materials typically use some form of lithium metal oxide (specific capacity: 272 mAh g-1 which has problems with limited capacity, thermal runaway, and an unreliable supply chain. Our research group’s solution involves investigating new lightweight, organic redox groups combined with a conductive polymer backbone to serve as a possible replacement for the cathode ...


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster 2022 Clemson University

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter ...


Valorization Of Biopolymers And Biomass To Produce Materials For A More Circular Economy, Moira Lauer 2022 Clemson University

Valorization Of Biopolymers And Biomass To Produce Materials For A More Circular Economy, Moira Lauer

All Dissertations

With a globally increasing population and largely unchecked consumption of raw materials, human society is on track for devastating consequences. Two industries responsible for utilizing massive amounts of raw materials and generating equally gargantuan quantities of waste are the packaging and infrastructure sectors. In 2017 in Europe, for example, packaging reached a record 173 kg of packaging waste per capita. One of the largest packaging consumers is the food industry, in which 40% of packaging is made of petroleum-derived single-use plastic, leading to a massive carbon imbalance. “The Built Environment,” on the other hand, is responsible for about 50% of ...


Synthesis And Study Of Unsymmetrical Bidentate Bis(Phosphino)Pyrrole Ligands And Their Transition Metal Complexes, Julia F. Vidlak 2022 University of Richmond

Synthesis And Study Of Unsymmetrical Bidentate Bis(Phosphino)Pyrrole Ligands And Their Transition Metal Complexes, Julia F. Vidlak

Honors Theses

Our laboratory has reported the synthesis and characterization of a broad library of unsymmetrical bidentate bis(phosphino)pyrrole (BPP) ancillary ligands for use in nickel-catalyzed cross-coupling reactions. The electronic and steric properties of nickel complexes bearing these ligands are examined, and our data support the hypothesis that these ligands produce nickel complexes with electron-deficient metal centers. The syntheses of (BPP)Ni(o-tolyl)Cl precatalysts for utilization in nickel-catalyzed Buchwald-Hartwig Amination are described, and preliminary reactivity studies reveal that (BPP)Ni(o-tolyl)Cl precatalysts are effective in promoting C–N cross-coupling reactions. Finally, we report steric measurements and electronic properties obtained ...


Simplified Synthesis Of Conjugated Polymers Enabled Via 1,4-Dihydropyrrolo[3,2-B]Pyrrole, Kenneth-John Jack Bell 2022 Kennesaw Sate University

Simplified Synthesis Of Conjugated Polymers Enabled Via 1,4-Dihydropyrrolo[3,2-B]Pyrrole, Kenneth-John Jack Bell

Master of Science in Chemical Sciences Theses

Conjugated polymers have attracted significant attention as the active layer material in organic electronics, such as organic photovoltaics and light-emitting diodes, partly due to the ability to influence a broad range of properties through structural design motifs. However, high performance conjugated polymers suffer from numerous synthetic steps, generation of toxic waste, and harsh reaction conditions all of which impart additional costs that inhibit their widespread utilization. Therefore, an emphasis on reducing synthetic complexity and utilizing abundant, commercially available starting materials is needed for organic electronics to reach their full potential. Dihydropyrrolo[3,2-b]pyrrole (H2DPP) chromophores offer a ...


1st Place Contest Entry: Designing Hollow Nanogels For Drug Delivery Applications, Mo Hijazi 2022 Chapman University

1st Place Contest Entry: Designing Hollow Nanogels For Drug Delivery Applications, Mo Hijazi

Kevin and Tam Ross Undergraduate Research Prize

This is Mo Hijazi's submission for the 2022 Kevin and Tam Ross Undergraduate Research Prize, which won first place. It contains their essay on using library resources, their bibliography, and a summary of their research project on hollow-core nanogels.

Mo is a second-year student at Chapman University, majoring in Biological Sciences. Their faculty mentor is Dr. Molla Islam.


Towards Semiconductor Nanorods With Nickel/Iron Cocatalyst., Kehinde Ayorinde 2022 Western Kentucky University

Towards Semiconductor Nanorods With Nickel/Iron Cocatalyst., Kehinde Ayorinde

Masters Theses & Specialist Projects

The adverse effects associated with the utilization of fossil fuels has led to the need to provide an alternative cleaner energy. Photocatalytic hydrogen evolution reaction via water splitting provides a renewable pathway to generating energy. Our photocatalyst system includes a semiconductor component (CdSe/CdS core/shell nanorods) to capture light and an attached metal (cocatalyst) for the hydrogen evolution reaction. Platinum is an effective metal catalyst for this reaction due to strong proton binding energy that easily facilitates the reduction of water to produce hydrogen gas. However, due to the high cost of platinum, there is a need to find ...


Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony 2022 University of South Florida

Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony

USF Tampa Graduate Theses and Dissertations

Over the course of the past 80 years, semiconductor devices have become increasingly ubiquitous in everyday life.From constructing mainframes that encompassed entire rooms during the 1940s, to inventing personal computers in the 1980s, to developing progressively faster smartphones and wearable technology in the 2010s, the primary driving force behind the Digital Revolution has been increasing transistor counts, and thus computing power, via incremental improvements in optical lithography. In 1965, Intel co-founder Gordon Moore boldly predicted that the transistor density of semiconductor devices would double approximately every 18-24 months. While this prediction -- now colloquially referred to as Moore's Law ...


The Analysis Of Microplastics Found In The Flowers Of Rhode Island, Hailey Hendricks, Matthew Kiesewetter 2022 University of Rhode Island

The Analysis Of Microplastics Found In The Flowers Of Rhode Island, Hailey Hendricks, Matthew Kiesewetter

Senior Honors Projects

No abstract provided.


Digital Commons powered by bepress