Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

3,571 Full-Text Articles 8,694 Authors 691,761 Downloads 130 Institutions

All Articles in Materials Chemistry

Faceted Search

3,571 full-text articles. Page 6 of 118.

P-Doped Ru-Pt Alloy Catalyst Toward High Performance Alkaline Hydrogen Evolution Reaction, Rong-Qin Huang, Wei-Ping Liao, Meng-Xuan Yan, Shi Liu, Yuan-Ming Li, Xiong-Wu Kang 2023 Guangdong Huihydrogen Energy Technology Co., Ltd, Guangzhou 510000, China

P-Doped Ru-Pt Alloy Catalyst Toward High Performance Alkaline Hydrogen Evolution Reaction, Rong-Qin Huang, Wei-Ping Liao, Meng-Xuan Yan, Shi Liu, Yuan-Ming Li, Xiong-Wu Kang

Journal of Electrochemistry

Electrocatalytic water splitting represents grand promise for hydrogen fuel in modern energy equipment, and the design and fabrication of higher performance catalysts are at the central. Herein, we report the sequential phosphorus (P)-doping into ruthenium (Ru) nanoparticles (Ru-P/C) by thermal annealing of Ru nanoparticles in phosphine (PH3) atmosphere and deposition of extremely low concentration of platinum (Pt) to obtain P-doped Ru-Pt alloy catalyst supported on carbon nanotubes (CNTs), which is denoted as (Ru-P)#Pt/C. The data by X-ray diffraction spectroscopy and transmission electron microscopy show that the Ru nanoparticles existed in the form of hexagonal close-packed (hcp) phase with …


Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia 2023 Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China; Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guangxi, Guilin, 541004, China; Kunshan Superior Silk Screen Printing Material Co., LTD, Kunshan, 215300, Jiangsu, China

Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia

Journal of Electrochemistry

Deep eutectic solvents (DESs) have been reported as a type of solvent for the controllable synthesis of metal nanostructures. Interestingly, flower-like palladium (Pd) nanoparticles composed of staggered nanosheets and nanospheres are spontaneously transformed into three-dimensional (3D) network nanostructures in choline chloride-urea DESs using ascorbic acid as a reducing agent. Systematic studies have been carried out to explore the formation mechanism, in which DESs itself acts as a solvent and soft template for the formation of 3D flower-like network nanostructures (FNNs). The amounts of hexadecyl trimethyl ammonium bromide and sodium hydroxide also play a crucial role in the anisotropic growth and …


Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang 2023 Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Sichuan, Chengdu 610041, China

Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang

Journal of Electrochemistry

Rational design and synthesis of non-precious-metal catalyst plays an important role in improving the activity and stability for oxygen reduction reaction (ORR) but remains a major challenge. In this work, we used a facile approach to synthesize iron nanoparticles encapsulated in nitrogen-doped porous carbon materials (Fe@N-C) from functionalized metal-organic frameworks (MOFs, MET-6). Embedding Fe nanoparticles into the carbon skeleton increases the graphitization degree and the proportion of graphitic N as well as promotes the formation of mesopores in the catalyst. The Fe@N-C-30 catalyst showed the excellent ORR activity in alkaline solutions (E0 = 0.97 V vs. RHE, E1/2 …


Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert 2023 University of Mississippi

Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert

Honors Theses

The work covered in this thesis all falls under the theme of photophysical processes after light and matter interact. Those of primary interest are Raman scattering induced vibrations and excited state dynamics probed by transient absorption spectroscopy. Small molecules are studied with Raman spectroscopy and computational chemistry. These studies unearth the shifts in vibrational frequency as a function of charge transfer or receipt and how a quantitative assay of natural orbital populations and delocalization can offer both the nature and magnitude of this charge transfer. Further, a method is presented that builds upon previous work within the academic family tree; …


Synthesis And Characterization Of Sodium Cathode Materials, He Zhou 2023 Washington University in St. Louis

Synthesis And Characterization Of Sodium Cathode Materials, He Zhou

McKelvey School of Engineering Theses & Dissertations

As sodium batteries hold great promise as a next-generation energy storage device to replace lithium batteries, the development of sodium battery materials has become increasingly urgent. The current study aims to investigate two potential sodium-ion battery cathode materials, Sodium Vanadium Phosphate, and Sodium Manganese Hexacyanoferrate, optimize the experimental procedures, conduct a systematic analysis of material properties and characterization, and ultimately determine the ideal synthesis conditions for these materials.

In the first part of the study, we focused on optimizing the synthesis of Sodium Vanadium Phosphate. By investigating various synthesis conditions, such as annealing temperature, pressure, ascorbic acid content, and material …


Electrochemical Properties Of Mof-Derived Nickel Compounds For High-Performance Supercapacitors And Electrocatalysts, Shiva Bhardwaj 2023 Pittsburg State University

Electrochemical Properties Of Mof-Derived Nickel Compounds For High-Performance Supercapacitors And Electrocatalysts, Shiva Bhardwaj

Electronic Theses & Dissertations

There are various forms in which humans use energy in daily life. From applications that require a high energy density to long-term storage, the requirements for energy usage are diverse. Therefore, with the continuous increase in users worldwide, more practical energy-driven sources are required, allowing manufacturers to look toward emerging functional materials. An emerging class of functional porous materials referred to as metal-organic framework (MOF) has received considerable attention over the past two decades, partially because of their potential use in various applications, including gas storage, molecular separations, electrocatalyst, and energy devices. For example, metal oxide and hydroxide-based MOF materials …


Halide Substitution Of Ternary Bismuth Chalcogenides For Photovoltaic Applications, Thomas Boggess 2023 Mississippi State University

Halide Substitution Of Ternary Bismuth Chalcogenides For Photovoltaic Applications, Thomas Boggess

Theses and Dissertations

Semiconductors play an integral part in modern society. From computing to LEDs their use is ubiquitous, and no field is more reliant on them than that of power generation. Current political movements have seen a push to decrease reliance on traditional forms of power generation, which relies on fossil fuels, to renewable sources such as solar power. However, current commercial solar panels, based on silicon, are lacking in efficiency, only reaching between 18% and 22% efficiency.1 In recent years, materials called perovskites have been garnering significant attention as possible replacements for silicon cells due to their favorable optoelectronic properties. …


Halide Exchange And Transport In Halide Perovskite Lattices, Temban Acha Billy 2023 University of Nebraska-Lincoln

Halide Exchange And Transport In Halide Perovskite Lattices, Temban Acha Billy

Department of Chemistry: Dissertations, Theses, and Student Research

In recent years, metal-halide perovskites (MHPs) have risen quickly to prominence as promising materials across a variety of fields, from photovoltaics to optoelectronics in general. We show here a facile solution growth for creating a variety of mixed halide MAPbBr3-xIx crystals, which we will use to study halide exchange and transport in halide perovskites. We generated a calibration curve between the optical response and chemical composition in mixed Br/I MHPs at room temperature. All mixed Br/I MHP crystals were subjected to measurements of photoluminescence (PL) and Raman spectroscopy. A subset of mixed-halide MHP crystals exhibited multiple emission …


Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob 2023 University of Maine

Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob

Electronic Theses and Dissertations

Yttria-stabilized zirconia (YSZ) is a widely used ceramic material in solid oxide fuel cells, oxygen sensors, and sensing applications due to its high ionic conductivity, chemical inertness, and thermal stability. YSZ is promising active coating for use in miniaturized harsh environment wireless surface acoustic sensors to monitor gases such as H2. Adding catalytic Pt nanoparticles can enhance gas reactivity and lead to associated film conductivity changes.

In this work, thin films with an (8% Y2O3 - 92% ZrO2) composition were deposited onto piezoelectric langasite substrates using RF magnetron sputtering in Ar:O2 - …


Quantum Mechanical Studies Of Water Splitting Reaction With (Zno)3 Nanoclusters As Catalysts, Duwage C. Perera 2023 University of Maine

Quantum Mechanical Studies Of Water Splitting Reaction With (Zno)3 Nanoclusters As Catalysts, Duwage C. Perera

Electronic Theses and Dissertations

With the current energy crisis, H2 production through the water-splitting reaction has drawn attention recently. In this thesis, I studied the structural (geometry) and electronic properties (vertical detachment energy and electron affinity) of ZnO monomers and dimers using density functional theory. ZnO is a metal oxide with a 3.37 eV band gap and can be a commercially cheaper photocatalyst in hydrogen (H2) production. The B3LYP/DGDZVP2 pair was selected after investigating different pairs of exchange functionals and basis sets to study the hydration, hydrolysis, and water-splitting reaction. The singlet-triplet energy gaps of small (ZnO)n clusters (n=1-6) of …


Biosynthesis Of Copper Nanoparticles Using Hylocereus Costaricensis Peel Extract And Their Photocatalytic Properties, Suriati Eka Putri, Netti Herawati, Ahmad Fudhail, Diana Eka Pratiwi, Sumiati Side, Abd Rahman, Susilo Sudarman Desa, Nur Ahmad, Subaer Junaedi, A. Surleva 2023 Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, South Sulawesi, Indonesia

Biosynthesis Of Copper Nanoparticles Using Hylocereus Costaricensis Peel Extract And Their Photocatalytic Properties, Suriati Eka Putri, Netti Herawati, Ahmad Fudhail, Diana Eka Pratiwi, Sumiati Side, Abd Rahman, Susilo Sudarman Desa, Nur Ahmad, Subaer Junaedi, A. Surleva

Karbala International Journal of Modern Science

A green chemistry method was used for the first time to synthesize copper nanoparticles (Cu-NPs) using CuSO4 as a precursor and red dragon fruit (Hylocereus costaricensis) peel wasted extract as a bio-reductor. Cu-NPs produced were then used as a photocatalysts for acid orange 7 (AO7) dyes degradation. The results showed that the smallest average crystallite size of the products ranged from 8.84 - 8.86 nm, and the FCC crystal structure had a surface area of 244.38-278.85 m2g-1. Furthermore, the optimum degradation of AO7 dye occurred at a ratio of 1:3 with a percentage of 81.07% for four cycles. These findings …


Hollow Mn3o4 Nanoparticles For Catalytic Oxidation Of Alkenes In Air, Nathan R. Loutsch 2023 University of South Dakota

Hollow Mn3o4 Nanoparticles For Catalytic Oxidation Of Alkenes In Air, Nathan R. Loutsch

Honors Thesis

Oxidized hydrocarbons (epoxides, alcohols, carboxylic acids, ketones, and aldehydes) have many uses including fuel production, pollution treatment, and chemical synthesis. These compounds can be formed by oxidizing alkenes and alkanes with the assistance of a catalyst. Heterogeneous catalysts have greater recyclability, but traditionally have lower activity and selectivity. Due to the increased relative surface area, nanomaterials can overcome some of the physical limitations. The Hoefelmeyer lab developed a new nanomaterial: hollow Mn3O4 nanoparticles. Sensitive synthetic conditions have been optimized. Due to the increased relative number of edge and corner atoms, the reactive properties of most small nanomaterials increase. Because of …


Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg 2023 University of Tennessee, Knoxville

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg

Doctoral Dissertations

Molten chloride salts have vast potential as heat transfer fluids with both nuclear and concentrated solar power applications. For application in energy systems, the characteristics that govern these systems must be well understood. This work focuses on inorganic molten chloride salts with a special emphasis on the experimental aspect of chemical research. Chapter 2 covers the synthetic approaches for the formation of molten chloride mixtures. Many salts can be purchased from industrial suppliers, but most must be purified therefore, Chapter 3 evaluates various methodology developed for removal of impurities in salt mixtures. Once the salt of proper content and purity …


Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan 2023 University of Tennessee, Knoxville

Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan

Doctoral Dissertations

Conjugated scaffolds with high electronic conductivity, high surface area, etc. are promising materials for diverse technological applications, especially in the electrochemical field. However, the current synthesis methods are still limited to the traditional solution-based method or the ionothermal method, which always require an inert atmosphere shield, large amounts of organic solvents, noble catalysts, long reaction time up to days, and high temperatures, etc. Therefore, there is a common goal of developing conjugated scaffolds through facile, green, straightforward pathways. Mechanochemistry, which is an efficient, sustainable, solvent-free methodology, could provide a unique reaction environment to synthesize this kind of functionalized materials, resulting …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels 2023 University of Louisville

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Detection Of Nitrogen Dioxide Via Graphene-Enhanced Raman Scattering, Spencer Hazeslip 2023 University of Arkansas, Fayetteville

Detection Of Nitrogen Dioxide Via Graphene-Enhanced Raman Scattering, Spencer Hazeslip

Chemistry & Biochemistry Undergraduate Honors Theses

This paper presents the development of a nitrogen dioxide (NO2) sensor that utilizes the phenomenon of graphene-enhanced Raman scattering (GERS). The sensor consists of monolayer graphene on a silicon wafer, functionalized noncovalently with Copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuTTPc) via the solution soaking method. A custom sensing chamber was constructed to enable Raman spectra to be collected during NO2 exposure. The response of the sensor was found to be linear between 10 and 100 ppm NO2, indicating that it could be used for both detection and quantification. Furthermore, the sensor was shown to be reusable after …


Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis 2023 University of Arkansas, Fayetteville

Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis

Chemistry & Biochemistry Undergraduate Honors Theses

Carbon dioxide (CO2) is widely known as a greenhouse gas that contributes to global warming due to the burning of fossil fuels. The carbon dioxide reduction reaction (CO2RR) is widely studied to reutilize CO2 to useful products, including methane, ethane, and carbon monoxide. This project studies the use of liquid metal gallium-indium as an electrocatalyst to perform CO2 reduction to carbon monoxide (CO) or possibly solid carbon in various solutions. Gallium-indium is characterized and studied through its “wetting” properties and adhesion to substrate foil through the measurement of contact angles inside solution. These liquid …


Dual Crosslinked Poly(Acrylamide-Co-N-Vinylpyrrolidone) Microspheres With Re-Crosslinking Ability For Fossil Energy Recovery, Jingyang Pu, Baojun Bai, Jiaming Geng, Na Zhang, Thomas P. Schuman 2023 Missouri University of Science and Technology

Dual Crosslinked Poly(Acrylamide-Co-N-Vinylpyrrolidone) Microspheres With Re-Crosslinking Ability For Fossil Energy Recovery, Jingyang Pu, Baojun Bai, Jiaming Geng, Na Zhang, Thomas P. Schuman

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Microspheres have been proposed to be applied in controlling wastewater production for mature oilfields and migrating leakage for gas and nuclear waste storage. However, it remains challenging for stacked microspheres to maintain strong blocking ability in micron-sized small pores or fractures. In this study, a novel microsphere was developed with comprehensive properties including high deformability and long re-crosslinking time upon tunable swelling ratio for the applications. A dual covalent and physical crosslinking strategy was used to develop novel microspheres reinforced by a hydrogen bond (H-bond, between pyrrole ring and amide group) and coordination bond (between chromium acetate (CrAc) and carboxyl …


Developing Methods For Pattern Transfer In Photoelectrochemical Lithography, Ashlyn DesCarpentrie 2023 University of Arkansas, Fayetteville

Developing Methods For Pattern Transfer In Photoelectrochemical Lithography, Ashlyn Descarpentrie

Chemistry & Biochemistry Undergraduate Honors Theses

The microprocessor industry has historically been driven by the goal of shrinking devices. To create features small enough to fit on such devices, photolithography has conventionally been used in the micropatterning of noble metal surfaces. Photolithography is a complicated and expensive process that involves a cleanroom, metallization processes, and photoresist. While this investment makes sense for high revenue applications, a number of microelectronic devices do not require nanometer-scale patterned features. Examples of such applications include specific types of antennae, sensing electrodes, and photocatalysts. Photolithography for these devices is thus too costly in both money and energy. The Coridan lab has …


Structural, Magnetic, Electrical, Pseudocapacitive, And Electrocatalytic Properties Of Bilayered Ruddlesden-Popper Oxides., Chandana Kananke-Gamage 2023 University of Louisville

Structural, Magnetic, Electrical, Pseudocapacitive, And Electrocatalytic Properties Of Bilayered Ruddlesden-Popper Oxides., Chandana Kananke-Gamage

Electronic Theses and Dissertations

Ruddlesden Popper (RP) oxides are perovskite-derived functional materials with the general formula An-1Aʹ2BnO3n+1, where A/Aʹ is often a lanthanide or alkaline earth metal, and B is usually a transition metal. These materials contain perovskite-like connectivity, where BO6 units share apexes to form layers that are stacked above each other. The number of layers in each stack is represented by n in the above formula. The spaces between stacks are often occupied by lanthanide or alkaline-earth metals (Aʹ-site metals), which also reside in intra-stack spaces (A-site) between the octahedra. Oxide materials derived from perovskites have been studied for a wide range …


Digital Commons powered by bepress