Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

4,578 Full-Text Articles 10,447 Authors 687,808 Downloads 156 Institutions

All Articles in Physical Chemistry

Faceted Search

4,578 full-text articles. Page 1 of 136.

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave 2024 The Graduate Center, City University of New York

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


On The Exact Helium Wave Function Expansion, Ii, An Exponential Modulated Form, Carl W. David 2024 University of Connecticut

On The Exact Helium Wave Function Expansion, Ii, An Exponential Modulated Form, Carl W. David

Chemistry Education Materials

A 11S wave function’s expansion for 2 electron atoms and ions is proposed employing an appropriate exponential factor and Fock’s logarithmic terms. The leading coefficient’s are presented.


Ten Most Important Scientific Questions In Electrochemistey, Chinese Society of Electrochemistry 2024 Chinese Chemical Society | Xiamen University

Ten Most Important Scientific Questions In Electrochemistey, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma 2024 Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang 2024 New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, Guangdong, China

Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang

Journal of Electrochemistry

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress …


Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal 2024 Key Laboratory of Advanced Fuel Cells and Electrolyzers cell Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China

Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal

Journal of Electrochemistry

In this work, the long-term stability and degradation mechanism of a direct internal-reforming solid oxide fuel cell stack (IR-SOFC stack) using hydrogen-blended methane steam reforming were investigated. An overall degradation rate of 2.3%·kh–1 was found after the stack was operated for 3000 hours, indicating a good long-term stability. However, the voltages of the two cells in the stack were increased at the rates of 3.38 mV·kh–1 and 3.78 mV·kh–1, while the area specific resistances of the three metal interconnects in the stack were increased to 0.276 Ω·cm2, 0.254 Ω·cm2 and 0.249 Ω·cm2 …


Predicting The Reactions Of Cs2, Ocs, And Co2 With Group Iv And Group Vi Transition Metal Oxides, Marissa Shea Blair, Zachary Ryan Lee PhD, David A. Dixon PhD 2024 Morehead State University

Predicting The Reactions Of Cs2, Ocs, And Co2 With Group Iv And Group Vi Transition Metal Oxides, Marissa Shea Blair, Zachary Ryan Lee Phd, David A. Dixon Phd

Posters-at-the-Capitol

Building on a recent serious of high level electronic structure studies of Lewis acid gas reactions with metal oxide sorbents, DFT (B3LYP and ωB97X-D) and CCSD(T) methods are being used to predict the Lewis acid-base addition (physisorption) and formation of metal oxide carbonate/thiocarbonate formation (chemisorption) reactions of CS2, OCS, and CO2 of CS2, OCS, and CO2 with Group IV (MO2)n and Group VI (MO3)n (n = 1 - 3) nanoclusters. For the Group IV oxides, chemisorption to form terminal carbonates and thiocarbonates is predicted to be the most favored, with thiocarbonate ligand binding energies slightly more exothermic than their carbonate …


Probing Charge Transport Mechanisms In 2d Semiconductive Metal Organic Framewoks, James Nyakuchena 2024 Marquette University

Probing Charge Transport Mechanisms In 2d Semiconductive Metal Organic Framewoks, James Nyakuchena

Dissertations (1934 -)

Metal organic frameworks (MOFs) are a class of highly porous crystalline materials constructed from metal nodes connected by multitopic organic ligands. Due to their unique properties such as large surface area, tunable pore structure, and structural diversity, they have demonstrated potential in a wide array of applications including gas storage and separation, sensing, catalysis, and drug delivery. However, there are only a handful of MOFs reported that have electrical conductivity, which prevents their applications in photoelectronic and photocatalytic applications. This is because hard metals and redox inactive ligands with terminal hard linking bases such as carboxylates are often used in …


Assessing The Performance Of Newly Developed Silica Nanoparticles Against Lead And Phosphate Ion Removal From Contaminated Solutions Using Adsorption Isotherm, Hasan Shamseddine, Nour Abi Aad, Rami Oweini, Ghassan Younes 2023 Faculty of Science, Beirut Arab University, Debbieh, Lebanon

Assessing The Performance Of Newly Developed Silica Nanoparticles Against Lead And Phosphate Ion Removal From Contaminated Solutions Using Adsorption Isotherm, Hasan Shamseddine, Nour Abi Aad, Rami Oweini, Ghassan Younes

BAU Journal - Science and Technology

This study investigates the removal of Lead and Phosphate ion from aqueous solution using new silica nanoparticles doped with europium (H1) which was characterized using Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Fourier-transform Infrared Spectroscopy (FTIR). The aim of this research is to develop a novel adsorbent material that can efficiently remove contaminated ions from wastewater or aqueous solutions. The adsorption of lead and phosphate ion onto the silica nanoparticles is investigated, and the efficiency of this removal is evaluated. Equilibrium data analysis reveals linear fitting with Langmuir isotherm with 24.76 mg/g Lead ion uptake, while for phosphate the …


Intelligent Control Based On Bp Artificial Neural Network For Electrochemical Nitrate Removal, Xin-Wan Zhang, Guang-Yuan Meng, Li-Qiang Fang, Ding-ming Chang, Tong Li, Jin-Wen Hu, Peng Chen, Yong-Di Liu, Le-Hua Zhang 2023 National Engineering Laboratory of High Concentration Refractory Organic Wastewater Treatment Technology, East China University of Science and Technology, Shanghai200237, China

Intelligent Control Based On Bp Artificial Neural Network For Electrochemical Nitrate Removal, Xin-Wan Zhang, Guang-Yuan Meng, Li-Qiang Fang, Ding-Ming Chang, Tong Li, Jin-Wen Hu, Peng Chen, Yong-Di Liu, Le-Hua Zhang

Journal of Electrochemistry

Achieving effective control of parameters in the process of nitrate wastewater treatment is critical to electrochemical water treatment. The powerful nonlinear mapping ability, self-adaptation and self-learning ability of neural network technology can optimize the electrochemical processing. However, there are few researches in this direction. Hence, based on the test data of the electrochemical reduction of nitrate, an electrochemical prediction model was established by using the BP neural network algorithm. Considering the correlation of various parameters in the electrochemical process, the reaction time, initial nitrate nitrogen concentration, pH and current density were determined as the input layer of the BP neural …


Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan 2023 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China

Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan

Journal of Electrochemistry

Modification of electrode is vitally important for achieving high energy efficiency in aqueous quinone-based redox flow batteries (AQRFBs). The modification of graphite felt (GF) was carried out by means of urea hydrothermal reaction, and simultaneously, the effects of hydrothermal reaction time on the functional groups and surface structure of nitrogen-doped graphite felt were studied. The surface morphology and defect, element content and surface chemical state of the modified electrode were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) test, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the modified electrodes was evaluated by cyclic voltammetry, electrochemical impedance …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao 2023 State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …


Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr 2023 School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China

Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr

Journal of Electrochemistry

Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing …


Elucidating The Pd Active Sites Of Bimetallic Gold-Palladium Catalysts Using Chemisorption And Titration Techniques, Andrew T. Boucher 2023 University of Maine

Elucidating The Pd Active Sites Of Bimetallic Gold-Palladium Catalysts Using Chemisorption And Titration Techniques, Andrew T. Boucher

Electronic Theses and Dissertations

A bimetallic nanoparticle catalyst combines two different metals on an oxide support, which can increase the selectivity towards useful products that may be too tightly bound to a monometallic catalyst. To explore the surface properties of such a system, we made a group of four PdAu bimetallic catalysts with varying gold mass loadings to compare with a parent Pd catalyst. The parent catalyst was synthesized using ion exchange, and gold was added to this parent Pd catalyst using incipient wetness impregnation (IWI) to create four bimetallic catalysts. All catalysts were characterized using H2 and CO chemisorption in tandem with …


Oxidation Of Ethanolamine By Potassium Permanganate In The Presence And Absence Of Sodium Dodecyl Sulphate: A Kinetic Study In An Acidic Medium, Dayo Latona 2023 Osun State University, Osogbo 221104, Nigeria

Oxidation Of Ethanolamine By Potassium Permanganate In The Presence And Absence Of Sodium Dodecyl Sulphate: A Kinetic Study In An Acidic Medium, Dayo Latona

Makara Journal of Science

The kinetics of ethanolamine oxidation by acidified KMnO4 was investigated in the absence and presence of sodium dodecyl sulfate (SDS) was investigated using a pseudo-first-order kinetics approach, with [ethanolamine]o >> [KMnO4]o. The measurements were conducted at λmax = 525 nm using an ultraviolet/visible-1800 Shimadzu spectrophotometer. The stoichiometry showed that 2 moles of KMnO4 were consumed by 5 moles of ethanolamine in the aqueous medium. The reaction orders in both the aqueous and micellar media remained the same with a first-order dependence on [KMnO4] and [ethanolamine] and a fractional-order dependence on [H …


Stress-Sensing In Flexible Epoxy Adhesives, Christine Rukeyser 2023 The University of Tennessee at Chattanooga

Stress-Sensing In Flexible Epoxy Adhesives, Christine Rukeyser

Honors Theses

In mechanochemistry, mechanical force causes a chemical change using small molecules, called mechanophores, by covalently connecting them into polymer materials. Stress-sensing mechanophores give a visual signal of mechanical force on the molecular level within a material. To our knowledge, stress-sensing mechanophores have never been incorporated into a commercially available epoxy kit. In this work, the characterization of two 3MTM Scotch-Weld TM Epoxy Adhesive kits: DP100 Plus Clear and DP190 Translucent have been completed through FT-IR Spectroscopy. The addition of the mechanophore spiropyran to the 3M kits will be discussed; as well as preparation and characterization of three dimerized anthracene derivatives. …


Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins 2023 University of Tennessee, Knoxville

Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins

Doctoral Dissertations

This dissertation focuses on understanding and addressing the fundamental physicochemical phenomena that lead to weak interfaces and structural warpage in material extrusion 3D printing. Polymeric feedstocks used for this manufacturing technique were manipulated through the incorporation of additives that alter the dynamics of the matrix during and after printing. In Chapter II, adhesion between layers of structures printed from PEEK was strengthened through a combination of low-molecular weight additive incorporation and post-printing thermal annealing. Chapter III reports a method for decreasing the irreversible thermal strain of structures printed from poly(lactic acid) by introducing nanographene and photoinitiator additives into the feedstock …


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost 2023 Clemson University

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Understanding The Interaction Of Environmental Contaminants With Polystyrene Nanoparticles And Dna Using Nuclear Magnetic Resonance Spectroscopy And Density Functional Theory, Saduni Arachchi 2023 Clemson University

Understanding The Interaction Of Environmental Contaminants With Polystyrene Nanoparticles And Dna Using Nuclear Magnetic Resonance Spectroscopy And Density Functional Theory, Saduni Arachchi

All Dissertations

The objective of the thesis is to study the effect of environmental pollutants on polystyrene nanoparticles and biomolecules. This is done in two different techniques, particularly NMR and density functional theory. In this thesis, we use a combination of 1H NMR, Saturation-Transfer Difference (STD) NMR and relaxation experiments to study the interactions, kinetics and dynamics of antibiotics with polystyrene nanoparticles. (PS NPs) Density functional theory (DFT) is used to study the binding of commonly used non-oxidative hair dyes to biomolecules (DNA and amino acids) and PS particles.


Computational Investigations Of Bond Breaking Processes Using Dft And Td-Dft Approaches., Saurav Parmar 2023 University of Louisville

Computational Investigations Of Bond Breaking Processes Using Dft And Td-Dft Approaches., Saurav Parmar

Electronic Theses and Dissertations

The efficient application of DFT and TD-DFT has been harnessed to study bond-breaking processes in some molecules which play a prominent role in enzymatic reactions. The first application includes Radical S-adenosyl methionine (SAM) enzymes which are fundamentally important sources of organic radicals to initiate diverse radical reactions. Recently a bio-organometallic intermediate (Ω) that contains an Fe‒C bond has been characterized and shown to be a common feature of radical SAM enzymes. The strength of Fe‒C bond in Ω has been computed using broken-symmetry density functional theory (BS‒DFT). Additionally, Fe‒C bond dissociation energy (BDE) in Ω has been compared to that …


Digital Commons powered by bepress