Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

2,184 Full-Text Articles 3,685 Authors 632,772 Downloads 142 Institutions

All Articles in Physical Chemistry

Faceted Search

2,184 full-text articles. Page 1 of 75.

Hydrogen Bonding In Small Model Peptides; The Dft And Mp2 Study, Gracie Smith, Martina Kaledin 2022 Kennesaw State University

Hydrogen Bonding In Small Model Peptides; The Dft And Mp2 Study, Gracie Smith, Martina Kaledin

Symposium of Student Scholars

Formamide is a small model compound for the study of the peptide bond. The peptide bond links amino acids together, specifies rigidity to the protein backbone, and includes the essential docking sites for hydrogen-bond-mediated protein folding and protein aggregation, namely, the C=O acceptor and the N-H donor parts. Therefore, the infrared C=O (amide-I) and N-H (amide-A) vibrations provide sensitive and widely used probes into the structure of peptides. This computational chemistry work, we study hydrogen bonds in formamide dimer isomers. We evaluate the accuracy of the density functional theory (DFT) and many-body perturbation theory to the 2nd ...


Agricultural Aerosols: The Impact Of Farming Activity On Ice Nucleating Particles, Joseph Robinson 2022 Purdue University

Agricultural Aerosols: The Impact Of Farming Activity On Ice Nucleating Particles, Joseph Robinson

The Journal of Purdue Undergraduate Research

Farming activities cause particles such as soil dust and plant material to be emitted into the air. Some of these aerosols can become ice nucleating particles (INPs), serving as seeds for ice and mixed-phase clouds. While there have been ground-based studies of these particles in the western Great Plains and a single air-based study in Indiana, there is a distinct lack of ground-based studies in the Midwest. In Indiana, over two-thirds of the state is farmland, with over 75% of land in Tippecanoe County used for agriculture. Despite farming being such an essential part of life in Indiana, the connection ...


Investigating The Mechanism Of Protein And Peptide Electrospray Ionization, Elnaz Aliyari 2022 The University of Western Ontario

Investigating The Mechanism Of Protein And Peptide Electrospray Ionization, Elnaz Aliyari

Electronic Thesis and Dissertation Repository

Electrospray ionization (ESI) mass spectrometry (MS) is widely used for the detection and characterization of various analytes. However, many fundamental aspects of the ESI process remain poorly understood. Using molecular dynamics (MD) simulations, MS, and ion mobility spectrometry (IMS), this thesis sheds light on the mechanisms whereby gaseous analyte ions are formed from highly charged ESI nanodroplets. After a general introduction (Chapter 1), Chapter 2 focuses on the ion evaporation mechanism (IEM), i.e., the ejection of analyte ions from the droplet surface. The IEM is well established for low MW compounds, but it has remained contentious whether this pathway ...


Estimation Of The Bubble Point Pressure Of Multicomponent Reservoir Hydrocarbon Fluids, Benjamin Sunday Usen, Chidi Obi 2022 Department of Pure and Industrial Chemistry, Faculty of Science, University of Port Harcourt, Choba 5323, Nigeria

Estimation Of The Bubble Point Pressure Of Multicomponent Reservoir Hydrocarbon Fluids, Benjamin Sunday Usen, Chidi Obi

Makara Journal of Science

This study developed a novel C-sharp (C#) programming language for the estimation of bubble point pressure (BPP) of various hydrocarbon mixtures at equilibrium state. The methodology was based on vapor–liquid equilibrium calculation using Peng Robinson equation of state implementation, thermodynamic equilibrium calculation and Newton-Raphson’s method for the successive substitution of the unknown variables. The equal fugacity constraint can be satisfied by obtaining the equilibrium which serves as a criterion for two or more phases to exist at equilibrium. The problem was resolved by searching for a pressure that will satisfy the two constraints. Complex calculation was performed by ...


Pressure-Induced Modifications To The Structural And Optoelectronic Properties Of 2d Hybrid Organic-Inorganic Perovskites, Jesse Ratte 2022 The University of Western Ontario

Pressure-Induced Modifications To The Structural And Optoelectronic Properties Of 2d Hybrid Organic-Inorganic Perovskites, Jesse Ratte

Electronic Thesis and Dissertation Repository

Recently, 2D hybrid organic-inorganic perovskites (HOIP) have garnered lots of research interest for their applications in optoelectronic devices, especially in solar cells. The optoelectronic properties of 2D HOIPs have yet to be optimized for these applications. High external pressure is well known to induce structural modifications to 2D HOIPs, and thus modify their optoelectronic properties. Herein, we report a study of the effects of high pressure (HP) on the structures and optoelectronic properties of cyclohexane methylamine (CMA) lead iodide (CMA2PbI4) and the structures of N,N-dimethylphenylene-p-diammonium (DPDA) lead iodide (DPDAPbI4).

High pressure measurements of CMA2PbI4 were performed using Raman spectroscopy ...


Sensitized Photooxidation Of Prenylated Compounds: Mechanisms Of Downstream Dark Effects And Phototoxicity Priming, Shakeela Jabeen 2022 The Graduate Center, City University of New York

Sensitized Photooxidation Of Prenylated Compounds: Mechanisms Of Downstream Dark Effects And Phototoxicity Priming, Shakeela Jabeen

Dissertations, Theses, and Capstone Projects

This thesis consists of four chapters as detailed below.

Chapter 1 discusses a singlet oxygen priming mechanism. Airborne singlet oxygen derived from photosensitization of triplet dioxygen is shown to react with an alkene surfactant (8-methylnon-7-ene-1 sulfonate) leading to ‘ene’ hydroperoxides that in the dark inactivate planktonic E. coli. The ‘ene’ hydroperoxide photoproducts are not toxic on their own, but they become toxic after the bacteria are pretreated with singlet oxygen. The total quenching rate constant (kT) of singlet oxygen of the alkene surfactant was measured to be 1.1 × 106 M1 s1 at the air/liquid ...


Contact Angle & Electrochemical Measurements Of Metallic Atmospheric Corrosion On Copper And Carbon Steel, Jacob J.M. Bunting, Jiju M. Joseph, Heng-Yong Nie, Samantha M. Gateman 2022 Western University

Contact Angle & Electrochemical Measurements Of Metallic Atmospheric Corrosion On Copper And Carbon Steel, Jacob J.M. Bunting, Jiju M. Joseph, Heng-Yong Nie, Samantha M. Gateman

Undergraduate Student Research Internships Conference

Understanding atmospheric corrosion has been incredibly challenging due to the complex interplay between surface microstructures, environmental variables, and electrochemical processes. The methodology presented is being developed to apply to atmospheric corrosion models of metals and other advanced materials by observing the change in contact angle in situ as a function of corrosion parameters. Performed contact angle measurements on two industrially relevant metals (copper and carbon steel) over a 1 min to 30-day time span to track the change in wettability due to the formation of an air-formed oxide layer (aged) as a function of surface roughness.


Simple And Fast Fabrication Methodology For Platinum And Carbon Ultramicroelectrodes (Ume) In Scanning Electrochemical Microscopy (Secm), Emma Mae Lord, Jiju Joseph, Samantha M. Gateman, Zhifeng Ding 2022 Western University

Simple And Fast Fabrication Methodology For Platinum And Carbon Ultramicroelectrodes (Ume) In Scanning Electrochemical Microscopy (Secm), Emma Mae Lord, Jiju Joseph, Samantha M. Gateman, Zhifeng Ding

Undergraduate Student Research Internships Conference

Scanning electrochemical microscopy (SECM) is a highly versatile method for measuring and imaging a wide range of systems. When paired with an intricately made ultramicroelectrode (UME) probe, SECM becomes an even more powerful tool for imaging microscale features in a system. However, purchasing these UME’s comes at a high cost with less ability for modification. Having high quality UME’s expands the ability of SECM and enables precise measuring and imaging in a wide range of applications such as solar cells in Dr. Ding’s lab, and corroding metals in Dr. Gateman’s lab. To combat this issue of ...


Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb 2022 The University of Maine

Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb

Electronic Theses and Dissertations

Increasing concentrations of fluorinated aromatic compounds in surface water, groundwater, and soil pose threats to the environment. Fundamental studies that elucidate mechanisms of dehalogenation for C-X compounds (where X represents a halide) are required to develop effective remediation strategies. For halogenated benzenes, previously published research has suggested that the strength of the C-X bond is not rate-determining in the overall rate of dehalogenation. Instead, the rate-determining step has been hypothesized to be adsorption of the C-X compound onto the surface of a catalyst. Building on this hypothesis, in this work, we examine the reaction kinetics of fluorobenzene conversion to benzene ...


Kinetics, Products, And Brown Carbon Formation By Aqueous-Phase Reactions Of Glycolaldehyde With Atmospheric Amines And Ammonium Sulfate, David O. De Haan, Alyssa A. Rodriguez, Michael A. Rafla, Hannah G. Welsh, Elyse A. Pennington, Jason R. Casar, Leila N. Hawkins, Natalie G. Jimenez, Alexia de Loera, Devoun R. Stewart, Antonio Rojas, Matthew-Khoa Tran, Peng Lin, Alexander Laskin, Paola Formenti, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin 2022 University of San Diego

Kinetics, Products, And Brown Carbon Formation By Aqueous-Phase Reactions Of Glycolaldehyde With Atmospheric Amines And Ammonium Sulfate, David O. De Haan, Alyssa A. Rodriguez, Michael A. Rafla, Hannah G. Welsh, Elyse A. Pennington, Jason R. Casar, Leila N. Hawkins, Natalie G. Jimenez, Alexia De Loera, Devoun R. Stewart, Antonio Rojas, Matthew-Khoa Tran, Peng Lin, Alexander Laskin, Paola Formenti, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin

Chemistry and Biochemistry: Faculty Scholarship

Glycolaldehyde (GAld) is a C2 water-soluble aldehyde produced during the atmospheric oxidation of isoprene and many other species and is commonly found in cloudwater. Previous work has established that glycolaldehyde evaporates more readily from drying aerosol droplets containing ammonium sulfate (AS) than does glyoxal, methylglyoxal, or hydroxyacetone, which implies that it does not oligomerize as quickly as these other species. Here, we report NMR measurements of glycolaldehyde’s aqueous-phase reactions with AS, methylamine, and glycine. Reaction rate constants are smaller than those of respective glyoxal and methylglyoxal reactions in the pH range of 3–6. In follow-up cloud chamber ...


Driving Piezochromism And Metallicity In Van Der Waals Materials Under Compression, Nathan Harms 2022 University of Tennessee, Knoxville

Driving Piezochromism And Metallicity In Van Der Waals Materials Under Compression, Nathan Harms

Doctoral Dissertations

Complex chalcogenides provide an important platform to explore the interplay between structure, charge, and spin across pressure-induced phase transitions. Where much of the previous research has been focused on tuning these materials towards the single-layer limit, we instead explore the modification of bond lengths and bond angles under compression. In the first project we revealed piezochromism in MnPS3. We combined high pressure optical spectroscopy and first-principles calculations to analyze the dramatic color change (green → yellow → red → black) that takes place as the charge gap shifts across the visible and into the near infrared region, moving systematically toward closure at ...


Synthesis And Evaluation Of Water-Dispersed Aryl-Gold Nanoparticles And Applications In Catalysis, Ahmad AL Ahmad 2022 University of Maine

Synthesis And Evaluation Of Water-Dispersed Aryl-Gold Nanoparticles And Applications In Catalysis, Ahmad Al Ahmad

Electronic Theses and Dissertations

Gold nanoparticles have been used in environmental remediation as catalysts through biological and chemical redox reactions of many types of industrial waste including nitroarenes, organic dyes, carbon monoxide, and others. These reactions occur in harsh environmental conditions (e.g. changing temperature, presence of salts, extreme pH solutions) which require robust nanoparticles that can keep their activity and resist aggregation. This thesis describes the synthesis, characterization, and investigation of the catalytic activity of gold-aryl nanoparticles. Gold–aryl nanoparticles (AuNPs-COOH) fabricated using a mild reduction process of a molecular aryldiazonium gold(III) salt [HOOC-4-C6H4N≡N]AuCl4 showed high stability in the presence ...


Understanding Dynamics Of Polymers Under Confinement: A Molecular Dynamics And Neutron Scattering Study, Supun Samindra Kamkanam Mohottalalage 2022 Clemson University

Understanding Dynamics Of Polymers Under Confinement: A Molecular Dynamics And Neutron Scattering Study, Supun Samindra Kamkanam Mohottalalage

All Dissertations

The current study probes the structure, dynamics, and rheological behavior of associating polymers including ionomers in melts and solutions as well as conjugated polymers confined into nanoparticles, using molecular dynamics (MD) simulations and neutron scattering techniques. The study focuses on two families of associative polymers, ion containing macromolecules and conjugated polymers.

Polymers that consist of ionizable groups along their backbone found uses in a broad range of applications. Examples include light weight energy storage and generation systems, and biomedical applications, where the polymers act as ion exchange membranes, and actuators. The ionic groups tend to form clusters that are in ...


Evaluation Of The Energetic Factors In Crystalline Pharmaceuticals Using Solid-State Density Functional Theory And Low-Frequency Vibrational Spectroscopy, Margaret P. Davis 2022 Syracuse University

Evaluation Of The Energetic Factors In Crystalline Pharmaceuticals Using Solid-State Density Functional Theory And Low-Frequency Vibrational Spectroscopy, Margaret P. Davis

Dissertations - ALL

Due to the importance of maintaining stable and effective pharmaceutical solid doses, it is critical to study the variety of solid forms that active pharmaceutical ingredients can adopt including polymorphs, hydrates, and cocrystals. In this work, low-frequency vibrational spectroscopies and rigorous quantum mechanical simulations are combined to provide a new technique for characterizing and investigating pharmaceutically relevant polymorphs, hydrates, and cocrystals as well as a series of model cocrystals. Low-frequency spectra in the sub-200 cm-1 range provide not only unique and characteristic spectra for all of the systems explored here but, along with X-ray structural parameters, they offer a way ...


Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett 2022 University of Missouri-St. Louis

Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett

Dissertations

2,7-disubstituted silafluorenes and germafluorenes, originally designed for OLED applications, are a class of fluorescent dyes that have gained recent interest as probes for bioimaging and as biosensors to monitor cellular dynamics and interactions. Desirable biological probes absorb in the visible region, have high extinction coefficients, high quantum yield and excellent photostability. Here, their spectral properties are investigated under aqueous conditions for relevant biological applications. These molecules display intense blue fluorescence in the solid state and in solution, have high extinction coefficients, and exhibit appreciable solubility in aqueous solution. To better understand potential applications, the mechanism of fluorescence was investigated ...


Co-Microencapsulation Of Ruellia Tuberosa L. And Cosmos Caudatus K. Extracts For Pharmaceutical Applications, Choirin Annisa, Sasangka Prasetyawan, Anna Safitri 2022 Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia

Co-Microencapsulation Of Ruellia Tuberosa L. And Cosmos Caudatus K. Extracts For Pharmaceutical Applications, Choirin Annisa, Sasangka Prasetyawan, Anna Safitri

Makara Journal of Science

This study aims to co-microencapsulate the Ruellia tuberosa L. and Cosmos caudatus K. extracts, with chitosan–sodium tripolyphosphate (Na-TPP) as coating material. α-Amylase inhibition and antioxidant assays were conducted to determine the potential of microcapsules used as antidiabetic agents. The microcapsules were manufactured under the influences of pH, Na-TPP concentration, and stirring time. The optimum microencapsulation conditions were selected based on the highest encapsulation efficiency. The optimum microencapsulation conditions were a pH of 4, Na-TPP concentration of 0.15% (w/v), and stirring time of 60 min. The microcapsules exhibited an IC50 (inhibitory concentration) value of 223.64 ± 0 ...


On The Exact Helium Wave Function Expansion, Carl W. David 2022 University of Connecticut

On The Exact Helium Wave Function Expansion, Carl W. David

Chemistry Education Materials

A 1S wave function’s expansion for 2 electron atoms and ions is obtained and the leading coefficients are reported.


Molecular Vibrations And Shape-Selectivity: A Computational Model Of Biofuel Precursors In Zeolites, Babgen Manookian 2022 University of Massachusetts Amherst

Molecular Vibrations And Shape-Selectivity: A Computational Model Of Biofuel Precursors In Zeolites, Babgen Manookian

Doctoral Dissertations

We have used Density Functional Theory (DFT) to model acyclic and cyclic olefins in acidic zeolites. We have studied the impact of host-guest interactions between adsorbed molecules and zeolite frameworks through the lens of molecular vibrations and shape-selectivity. This work considered three zeolite frameworks with varying pore structures and environments: large pore zeolite HMOR and medium pore zeolites HZSM-5 and HZSM-22. A key finding is that for acyclic olefins in acidic zeolites there exists two regimes of host-guest interaction: a strong interaction leading to protonation and a weak interaction between charged guest and zeolite framework. We found that these interactions ...


Symmetry Progression And Possible Polar Metallicity In Nips3 Under Pressure, Nathan Harms, Takahiro Matsuoka, Subhasis Sanmanta, Amanda J. Clune, Kevin A. Smith, Amanda V. Haglund, Erxi Feng, Huibo Cao, Jesse S. Smith, David Mandrus, Heung-Sik Kim, Zhenxian Liu, Janice L. Musfeldt 2022 University of Tennessee, Knoxville

Symmetry Progression And Possible Polar Metallicity In Nips3 Under Pressure, Nathan Harms, Takahiro Matsuoka, Subhasis Sanmanta, Amanda J. Clune, Kevin A. Smith, Amanda V. Haglund, Erxi Feng, Huibo Cao, Jesse S. Smith, David Mandrus, Heung-Sik Kim, Zhenxian Liu, Janice L. Musfeldt

Chemistry Publications and Other Works

van der Waals solids are ideal platforms for the discovery of new states of matter and emergent properties under external stimuli. Under pressure, complex chalcogenides like MPS3 (M = Mn, Ni, Co, V) host sliding and structural transitions, insulator-to-metal transitions, the possibility of an orbitally-selective Mott state, piezochromism, and superconductivity. In this work, we bring together diamond anvil cell techniques, infrared and Raman scattering spectroscopies, and X-ray diffraction with a detailed symmetry analysis and first-principles calculations to uncover a series of high-pressure phases in NiPS3. Remarkably, we find five different states of matter between ambient conditions and 39 ...


Computational Modelling Of Interfacial Properties Of Droplets, Victor Kwan 2022 The University of Western Ontario

Computational Modelling Of Interfacial Properties Of Droplets, Victor Kwan

Electronic Thesis and Dissertation Repository

Aqueous nanodroplets containing reactive species play an important role in atmospheric chemistry and technology. The presence of atmospheric aerosol particles and the chemical reactions that they host plays a critical role in climate, visibility in the atmosphere, quality of air, and health. Man-made aerosols find applications in ink-jet printing, electrospinning, electrospraying, and ionization methods used in mass spectrometry.

Despite their small size, these systems show complex chemical and physical behaviour because a significant portion of the system is occupied by a liquid-vapour interface. Interfaces are distinct regions that are characterized by large mass density gradients, shape fluctuations, the particular orientation ...


Digital Commons powered by bepress