Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

1,299 Full-Text Articles 2,452 Authors 307,239 Downloads 97 Institutions

All Articles in Materials Chemistry

Faceted Search

1,299 full-text articles. Page 3 of 48.

The Effect Of Semiconductor Materials On Solar Cell Efficiency, Shivam Vohra 2018 Rockdale Magnet School

The Effect Of Semiconductor Materials On Solar Cell Efficiency, Shivam Vohra

The International Student Science Fair 2018

The purpose of this project was to increase the efficiency of solar cells through the use of quantum dots and nanoparticles. These substances would increase the efficiency of the semiconductor. The research hypothesis stated that if lead iodide was applied to the semiconductor, then the average voltage, amperage, power, and efficiency of the solar cells would increase. The procedure for this project involved creating a lead iodide and titanium dioxide mixture with dimethylformamide, ethanol, acetylacetone, and Triton X-100 in an autoclave. Then, two milliliters of each solution were applied to cadmium selenide quantum dots to make four different solutions. Each ...


Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong 2018 National Junior College

Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong

The International Student Science Fair 2018

Lithium ion batteries (LIBs) are commonly found in many portable electronic appliances due to their ability to be rechargeable. Currently, commercial anodes in Li-ion batteries (graphite) have a theoretical capacity of around 372 mAh/g, while FeCo2O4 that will be investigated as the anode material has a theoretical capacity of 901.985mAh/g, more than double of the current commercial anode’s capacity. Earlier work done by Sharma et al also showed that FeCo2O4 has a very promising initial capacity of 827mAh/g. As such, the engineering goal is to produce a battery that will have a higher capacity than ...


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn 2018 Korea Science Academy

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate ...


Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong 2018 National Junior College

Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong

The International Student Science Fair 2018

Lithium ion batteries (LIBs) are commonly found in many portable electronic appliances due to their ability to be rechargeable. Currently, commercial anodes in Li-ion batteries (graphite) have a theoretical capacity of around 372 mAh/g, while FeCo2O4 that will be investigated as the anode material has a theoretical capacity of 901.985mAh/g, more than double of the current commercial anode’s capacity. Earlier work done by Sharma et al also showed that FeCo2O4 has a very promising initial capacity of 827mAh/g. As such, the engineering goal is to produce a battery that will have a higher capacity than ...


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn 2018 Korea Science Academy

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate ...


The Effect Of Semiconductor Materials On Solar Cell Efficiency, Shivam Vohra 2018 Rockdale Magnet School

The Effect Of Semiconductor Materials On Solar Cell Efficiency, Shivam Vohra

The International Student Science Fair 2018

The purpose of this project was to increase the efficiency of solar cells through the use of quantum dots and nanoparticles. These substances would increase the efficiency of the semiconductor. The research hypothesis stated that if lead iodide was applied to the semiconductor, then the average voltage, amperage, power, and efficiency of the solar cells would increase. The procedure for this project involved creating a lead iodide and titanium dioxide mixture with dimethylformamide, ethanol, acetylacetone, and Triton X-100 in an autoclave. Then, two milliliters of each solution were applied to cadmium selenide quantum dots to make four different solutions. Each ...


The Incorporation Of Phosphorus Into Block Copolymers And Their Self-Assembly, Benjamin F. Hisey 2018 The University of Western Ontario

The Incorporation Of Phosphorus Into Block Copolymers And Their Self-Assembly, Benjamin F. Hisey

Electronic Thesis and Dissertation Repository

The content of this thesis focuses on the incorporation of phosphorus into amphiphilic block copolymers (BCPs) for the realization of novel properties in the solution phase self-assembled materials derived from the BCPs. The incorporation was achieved through either attaching phosphorus to the terminus of already existing BCPs or the synthesis of novel BCPs from prepared or commercially available phosphorus containing monomers. The phosphorus containing polymers exhibited properties dependent on the existence of the phosphorus species in the BCPs. The first example of this is the modification of poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) copolymers by the attachment ...


Synthesis And Characterization Of Organically Modified Hectorites For Sequestration Of Pfaas From Contaminated Drinking Water, Alexandra Pagano 2018 Union College

Synthesis And Characterization Of Organically Modified Hectorites For Sequestration Of Pfaas From Contaminated Drinking Water, Alexandra Pagano

Honors Theses

Perfluoroalkyl Acids (PFAAs), a family of industrial chemicals, are found in household products such as pizza boxes, microwave popcorn bags, and non-stick pans. PFAAs of different carbon chain lengths and ionic head groups exist, such as PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonic acid). Used without regulation in industry for decades, PFAAs only recently became recognized as contaminants of emerging concern, since they are bioaccumulative in organisms, persistent in the environment, and toxic. PFAAs are known to accumulate in the blood, liver and kidneys, and drinking water contaminated with PFAAs has been linked to certain types of cancer. Therefore, it ...


Glycopolymer Functionalization Of Polymersomes, Josh Jadischke 2018 The University of Western Ontario

Glycopolymer Functionalization Of Polymersomes, Josh Jadischke

Electronic Thesis and Dissertation Repository

Carbohydrates are important to cellular communication, recognition, and pathogenesis, making them a useful synthetic target for application in therapeutics and diagnosis. Synthetic carbohydrate presenting scaffolds can replicate or interrupt the binding interactions that occur in nature. Due to the weak nature of the monosaccharide-protein bond, most carbohydrate presenting scaffolds display saccharides in a multivalent manner to improve binding. Recently there has been an effort to combine carbohydrate containing scaffolds with polymersomes (vesicles composed of polymers), due to the structural resemblance of polymersome membranes to biological membranes. This thesis describes the progress towards functionalizing polymersomes with linear glycopolymers as a potential ...


Polymeric Hairy Nanoparticles With Helical Hairs: Synthesis And Self-Assembly, MD Hanif Uddin 2018 Atlanta University Center

Polymeric Hairy Nanoparticles With Helical Hairs: Synthesis And Self-Assembly, Md Hanif Uddin

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

Nanoscale particles based on the nature of building blocks often self-assemble into superstructures with distinctive spatial arrangements which can be used as functional materials for different application. Micro-phase separated hairy nanoparticle with helical hair can self-assemble to form supramolecular material which may mimic the properties and functions of the natural polymers such as protein and cellulose. Beside this hairy/core-shell nanoparticles also may find many applications such as in asymmetric catalysis, nano-fillers in tire and rubbers, model systems for biology, lithography and as sensors. In this work, we have successfully synthesized two hairy nanoparticles both of which has cross-linked polystyrene ...


Tumor-Targeting Fluorinated Phthalocyanines For Theranostic Applications, Erik Nathaniel Carrión 2018 Seton Hall University

Tumor-Targeting Fluorinated Phthalocyanines For Theranostic Applications, Erik Nathaniel Carrión

Seton Hall University Dissertations and Theses (ETDs)

Hydrocarbon-based therapeutics and imaging agents are prone to chemical oxidation and degradation resulting in loss of activity and limited functional utility. Thus, more material is required to achieve long-lasting therapeutic effects. Phthalocyanines (Pcs) and their metal complexes (PcMs) can be utilized as prodrugs requiring only renewable energy resources namely, air and light, for cancer therapy and diagnostic (theranostic) applications related to photodynamic therapy (PDT). Replacement of labile C-H bonds in the Pc scaffold with a combination of fluoro and perfluoroisopropyl groups has resulted in a stable yet reactive oxidation catalyst of biological significance and importance. For example, F64PcZn ...


Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers 2018 The University of Southern Mississippi

Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers

Dissertations

Delaminated montmorillonite (MMT) clay/ maleic anhydride grafted LLDPE nanocomposite multilayer films with alternating layers of LDPE were produced through multilayer co-extrusion. The MMT concentration within the nanocomposite layers was increased through annealing the films in the melt due to a mismatch in interdiffusion rates of the polymer layers. Analysis of the nanocomposite layers upon annealing revealed that the platelets impinged upon one another resulting in significant improvement in oxygen barrier in the multilayer system, exceeding the results of bulk nanocomposites.

Model analysis demonstrated that increasing the nanoplatelet aspect ratio or initial concentration in the filled layers would lead to even ...


Investigating Stainless Steel Particle Synthesis, Michael E. Klaczko 2018 SUNY College of Environmental Science and Forestry

Investigating Stainless Steel Particle Synthesis, Michael E. Klaczko

Honors Theses


This thesis focuses on the chemistry for stainless nanoparticle synthesis in order to develop corrosion resistant nanoparticles. Syntheses within the Maye lab have been successful, however at the large scale these processes have been hindered by low yields as a result of byproduct formation and oxidation loss. This study addresses these problems by introducing a new precursor to synthesize the Fe core of FeCr/Ni stainless core/shell particles. Traditionally iron pentacarbonyl (Fe(CO)5 is used, but this study uses iron acetylacetonate (Fe(acac)3) as a substitute. Although the degradation of Fe(CO)5 is more commonly used ...


Evaluation Of The Biocompatibility And Micromechanical Properties Of Experimental Dental Adhesives, Hoda Moussa 2018 State University of New York College at Buffalo - Buffalo State College

Evaluation Of The Biocompatibility And Micromechanical Properties Of Experimental Dental Adhesives, Hoda Moussa

Forensic Science Theses

The purpose of this study was to investigate the biocompatibility and micromechanical properties of newly synthesized antibacterial monomer and cross-linker functional surfactants into a commercially available dental adhesive (Single Bond, 3M ESPE, Saint Paul, MN, USA) at three concentrations (0.05, 0.1, 0.25 mg/mg). All groups were analyzed by evaluation of micro-tensile bond strength, ultimate tensile strength, cell viability, antibacterial properties, and surface micro-hardness. Scanning electron microscopy (SEM) was used for interfacial characterization.

Human extracted molars were used as a substrate for bonding adhesives for the micro-tensile bond strength (MTBS) and scanning electron microscopy (SEM) studies. Twenty ...


Surface Reaction And Diffusion Kinetics In Semiconducting Metal Oxide Film Gas Sensors, Aravind Reghu 2018 University of Maine

Surface Reaction And Diffusion Kinetics In Semiconducting Metal Oxide Film Gas Sensors, Aravind Reghu

Electronic Theses and Dissertations

Chemiresistive metal oxide gas sensors based on materials such as SnO2, ZnO, and TiO2, have been investigated extensively by many researchers for a wide range of applications. The band bending model, based on the surface chemistry of highly reactive ionosorbed species (O2- or O-) and the semiconducting material properties of SnO2, TiO2 and ZnO, adequately predicts the dependence of the change in sensor conductivity (Δσ) as a function of target gas pressure and temperature. However, the band bending model is not applicable to gas sensors based on reducible oxides such as WO3, MoO3 ...


Understanding The Coating-Substrate Interface Changes And Degradation Caused By Environmental Acclimation With Water And Electrolytes, Russell Vick 2018 The University of Southern Mississippi

Understanding The Coating-Substrate Interface Changes And Degradation Caused By Environmental Acclimation With Water And Electrolytes, Russell Vick

Honors Theses

While it is well known that polymeric coatings are used to protect metals from corrosion, efficient and reliable protocols for quantifying and estimating protective coatings’ lifetimes have yet to match real-time results in rate or in detected mechanisms of material failure. Alkoxysilane pretreatments are widely utilized for substrate preparation and improved coating system performance by changing the metal substrate surface morphology to improve adhesion at the coating-substrate interface by creating a foundation and excluding water from the system. Three pretreatments used were 3-aminopropyltriethoxy silane (APS), tetraethylortho silicate (TEOS), N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAS). They were investigated to improve the ...


Lithium And The Foreseeable Future, Paolo Vargas 2018 University of Arkansas, Fayetteville

Lithium And The Foreseeable Future, Paolo Vargas

Mechanical Engineering Undergraduate Honors Theses

This paper aims to clarify the uncertainties regarding worldwide lithium resource availability in the years to come. Previous studies made on the subject are presented with some ambiguity and this work intends to fill the gaps. The information and data presented throughout this script with respect to global lithium resources and reserves are mostly based on data released by the United States Geological Survey (USGS). Lithium resource availability in the future is a point of paramount significance primarily for the automotive, portable electronics, and the power generation industry. Since, a change of supply would ultimately affect the price of lithium ...


Long-Range Electrostatic Interactions In Gold Catalysis And Fluorinating Reagent Development., Zhichao Lu 2018 University of Louisville

Long-Range Electrostatic Interactions In Gold Catalysis And Fluorinating Reagent Development., Zhichao Lu

Electronic Theses and Dissertations

Our research focus is on applying two long range electrostatic interactions--coulombic interaction between ion pairs and hydrogen bonding—to two tasks: exploring counterion effects in gold catalysis and utilizing hydrogen bonding for fluorinating reagent development. Cationic gold catalysis is considered one of the most important breakthroughs in organic synthesis over the past two decades. A wealth of empirical information on counterion effects is now available regarding homogeneous gold catalysis. However, the rational understanding of the counterion effect on reactivity is still elusive. We proposed a widely applicable model to rationalize the kinetic effect in gold catalyzed reaction. We first solved ...


Synthesis Of A Silsesquioxane Based Supramolecular Polymer, Rachel Bianculli 2018 Bowling Green State University

Synthesis Of A Silsesquioxane Based Supramolecular Polymer, Rachel Bianculli

Honors Projects

Research toward smart materials, specifically self-healing polymers, is an expanding topic within the materials science field. These materials rely heavily on dynamic crosslinking that is achieved by inducing different degrees of hydrogen bonding, van der Waals forces, etc. This work, demonstrated by research previously done within the Ostrowski research group, shows how coordination bonds of transition metals have been shown to create light activated, self-healing properties. Work done with these light-activated chromium (III) complexes with a poly(butylyene-co-ethylene) backbone have shown how metal—ligand coordination geometries can tune mechanical properties of the polymeric material. However, these materials suffer from being ...


Rhombohedral Distortion Of The Cubic Mgcu2-Type Structure In Ca2pt3ga And Ca2pd3ga, Asa Toombs, Gordon J. Miller 2018 Iowa State University and Ames Laboratory

Rhombohedral Distortion Of The Cubic Mgcu2-Type Structure In Ca2pt3ga And Ca2pd3ga, Asa Toombs, Gordon J. Miller

Ames Laboratory Accepted Manuscripts

Two new fully ordered ternary Laves phase compounds, Ca2Pt3Ga and Ca2Pd3Ga, have been synthesized and characterized by powder and single-crystal X-ray diffraction along with electronic structure calculations. Ca2Pd3Ga was synthesized as a pure phase whereas Ca2Pt3Ga was found as a diphasic product with Ca2Pt2Ga. Electronic structure calculations were performed to try and understand why CaPt2 and CaPd2, which crystalize in the cubic MgCu2-type Laves phase structure, distort to the ordered rhombohedral variant, first observed in the ...


Digital Commons powered by bepress