Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

1,509 Full-Text Articles 2,713 Authors 542,342 Downloads 121 Institutions

All Articles in Materials Chemistry

Faceted Search

1,509 full-text articles. Page 7 of 63.

Nanoorthogonal Surface Modifications Of Gold Nanoparticles And Nanoclusters Through Strain-Promoted Cycloaddition Chemistry, Praveen N. Gunawardene 2021 The University of Western Ontario

Nanoorthogonal Surface Modifications Of Gold Nanoparticles And Nanoclusters Through Strain-Promoted Cycloaddition Chemistry, Praveen N. Gunawardene

Electronic Thesis and Dissertation Repository

This thesis explores the preparation of thiolated gold nanoparticles (AuNPs) and thiolated gold nanoclusters (AuNCs) capable of undergoing post-assembly surface modifications using two common “bioorthogonal” click reactions: the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction (which occurs between a strained-alkyne and an azide) and the strain-promoted alkyne-nitrone cycloaddition (SPANC) reaction (which occurs between a strained-alkyne and a nitrone). Due to their rapid and modifiable reaction kinetics, high chemoselectivity, and stability of the reactive partners, these reactions were originally designed to tether functional substrates to biologically sensitive biomolecules, without altering their structure or perturb the biologically sensitive environments in which they …


Degumming Of Hemp Fibers Using Combined Microwave Energy And Deep Eutectic Solvent, Bulbul Ahmed 2021 Louisiana State University and Agricultural and Mechanical College

Degumming Of Hemp Fibers Using Combined Microwave Energy And Deep Eutectic Solvent, Bulbul Ahmed

LSU Master's Theses

Hemp is considered as one of the sustainable agricultural fiber materials. Degumming or surface modification of hemp bast is needed to produce single fibers for ensuing textile and industrial applications. The traditional degumming process necessitates a high amount of alkali, which causes detrimental environmental pollution. This study offers a new method to degum hemp fibers with reduced use of harmful alkali and precious water resources. In this work, hemp bast fibers were degummed by using combined microwave energy and deep eutectic solvent (DES). The properties of hemp fibers manufactured by this method were investigated and compared with the traditional alkali …


Photovoltages In Polycrystalline Mosaic Solar Cells, Steluta A. Dinca, Eric A. Schiff 2021 Syracuse University

Photovoltages In Polycrystalline Mosaic Solar Cells, Steluta A. Dinca, Eric A. Schiff

Chemistry - All Scholarship

In some thin-film solar cells the light-absorbing layer is a mosaic of crystalline grains whose boundaries run from the back to the front of the cell. We used the semiconductor modeling software Sesame to do numerical calculations of the optoelectronic properties of such cells assuming that recombination of minority photocarriers occurs primarily at the grain boundaries. The work complements analytical results for diffusion-limited recombination at grain boundaries and dislocations. We chose idealized n-CdS/p-CdTe solar cells for illustration. We find that the open-circuit voltage, Voc, under illumination declines logarithmically with increasing ratio D/θ2, where D is the …


Recent Advances In Glycerol Electrooxidation On Pt And Pd: From Reaction Mechanisms To Catalytic Materials, Wei-Yi Zhang, Xian-Yin Ma, Shou-Zhong Zou, Wen-Bin Cai 2021 1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China

Recent Advances In Glycerol Electrooxidation On Pt And Pd: From Reaction Mechanisms To Catalytic Materials, Wei-Yi Zhang, Xian-Yin Ma, Shou-Zhong Zou, Wen-Bin Cai

Journal of Electrochemistry

The conversion of glycerol to value-added products has received considerable attention recently because the booming biodiesel industry produces a large amount of glycerol as a byproduct. Among various means, electrocatalytic oxidation of glycerol is appealing owing to its environmental friendliness and high efficiency. However, electrooxidation of glycerol is very complex, involving multiple electron and proton transfer processes with many reaction pathways. How to rationally design catalysts with high selectivity toward targeted products is an overarching challenge, and of both fundamental and practical significance. In this minireview we aim to provide an overview of recent advancements in electrooxidation of glycerol focusing …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya 2021 University of Massachusetts Amherst

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Metal-Assisted Catalytic Etching (Mace) For Nanofabrication Of Semiconductor Powders, Kurt W. Kolasinski 2021 West Chester University of Pennsylvania

Metal-Assisted Catalytic Etching (Mace) For Nanofabrication Of Semiconductor Powders, Kurt W. Kolasinski

Chemistry Faculty Publications

Electroless etching of semiconductors has been elevated to an advanced micromachining process by the addition of a structured metal catalyst. Patterning of the catalyst by lithographic techniques facilitated the patterning of crystalline and polycrystalline wafer substrates. Galvanic deposition of metals on semiconductors has a natural tendency to produce nanoparticles rather than flat uniform films. This characteristic makes possible the etching of wafers and particles with arbitrary shape and size. While it has been widely recognized that spontaneous deposition of metal nanoparticles can be used in connection with etching to porosify wafers, it is also possible to produced nanostructured powders. Metal-assisted …


Harnessing Surface Chemistry And Instabilities In Silicone Elastomers To Synthesize Adaptive Systems With Mechanically Tunable Surface Properties And Functionality, Ali Jamal Mazaltarim 2021 University of Nebraska - Lincoln

Harnessing Surface Chemistry And Instabilities In Silicone Elastomers To Synthesize Adaptive Systems With Mechanically Tunable Surface Properties And Functionality, Ali Jamal Mazaltarim

Student Research Projects, Dissertations, and Theses - Chemistry Department

Material interfaces are of critical importance to numerous fields, including nanomaterials, electronics, microfluidics, synthesis, bioanalysis, pharmaceuticals, and catalysis, and they have been extensively researched. The materials used in these fields are often rigid/hard (such as silicon wafers) resulting in static surface properties. Consequently, the chemical/morphological properties of a surface may be modified using synthetic or mechanical means to tailor the interfacial properties of a material (i.e., surface energy, adhesion, topography, and reactivity). Recently, emphasis has been placed on designing dynamic materials with adaptive interfacial properties that respond to a variety of environmental stimuli. To this end, the surface chemistry and …


Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere 2021 University of Arkansas, Fayetteville

Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere

Graduate Theses and Dissertations

Porous polymer membrane filters are widely used in separation and filtration process. Micro- and ultra-filtration membranes are commonly used in biopharmaceutical applications such as filtering viruses and separating proteins from a carrier solution. The formation of these membrane filters via phase inversion is a complex and interconnected process where varying casting conditions can have a wide variety of effects on the final membrane morphol- ogy. Tailoring membrane filters for specific performance characteristics is a tedious and time consuming process. The time and length scales of membrane formation make it extremely difficult to experimentally observe membrane formation. Modeling the membrane formation …


Design Of Antioxidant Monomer, Augustine Osilamah Yusuf 2021 Western Kentucky University

Design Of Antioxidant Monomer, Augustine Osilamah Yusuf

Masters Theses & Specialist Projects

Reactive oxygen species such as hydrogen peroxide are present at the sites of inflammation in the body. Degradable polymeric nanoparticles have shown great promise in a range of biomedical applications which include preferential delivery of therapeutics to such inflamed sites. We are working towards a new class of materials expected to have tunable degradation rates in the presence of hydrogen peroxide. These new materials consist of three parts: degradable linkages, antioxidant groups, and unreactive filler monomers such as methylmethacrylate. We have synthesized a polymerization initiator with a degradable linkage, and we have shown that using this initiator to synthesize another …


Microfabrication And Electrochemical Characterization Of A Novel Su-8 Probe With An Array Of Individually Addressable Electrodes Suitable For Redox Cycling Experiments In Ultra-Small Volumes, Mahsa Lotfi Marchoubeh 2021 University of Arkansas, Fayetteville

Microfabrication And Electrochemical Characterization Of A Novel Su-8 Probe With An Array Of Individually Addressable Electrodes Suitable For Redox Cycling Experiments In Ultra-Small Volumes, Mahsa Lotfi Marchoubeh

Graduate Theses and Dissertations

Redox cycling is an electrochemical technique that utilizes closely spaced generator and collector electrodes to cycle reversible redox species between their oxidative states. With advantages in signal amplification, selectivity of species based on their electrochemical reaction mechanism, and limited or no background subtraction, this technique is well suited for selective detection of important electrochemically active molecules such as dopamine at basal or slowly changing levels.

Miniaturized medical devices have become an area of great interest for measurement of chemicals in limited volumes with low concentrations or in sensitive tissues. A probe on a polymeric SU-8 substrate with suitable dimensions and …


Soft Lithographic Replication Of High Length-Scale Micropillars From Laser-Ablated Fused-Silica Templates, Jason Pitts 2021 Portland State University

Soft Lithographic Replication Of High Length-Scale Micropillars From Laser-Ablated Fused-Silica Templates, Jason Pitts

University Honors Theses

Soft lithography is a well-established route to wafer-scale reproduction of micro- and nanoscale features in a wide variety of materials. Nevertheless, micron length scales have yet to be explored, despite the potential utility of such structures. Here, polymer micropillars of 6-12 μm length, approximately 0.5-1.5 μm wide at 10 μm spacing are reproduced from a polydimethylsiloxane (PDMS) mold made from patterned cellulose acetate (CA). The patterned CA was cast from a rigid fused silica template machined by a pulsed femtosecond laser. Pore topographic features were successfully reproduced in Norland Optical Adhesive (NOA), polycaprolactone (PCL), Nafion, acrylonitrile butadiene styrene (ABS), and …


Fullerene And Tungsten Oxide Nanostructures-Based Electrocatalysts For All-Vanadium Redox Flow Batteries, Farah Ahmed El Diwany 2021 The American University in Cairo AUC

Fullerene And Tungsten Oxide Nanostructures-Based Electrocatalysts For All-Vanadium Redox Flow Batteries, Farah Ahmed El Diwany

Theses and Dissertations

The vanadium redox flow battery (VRFB) is one of the most promising long-term energy storage solutions mainly due to its long service life and the independence of its energy capacity on power rating and vice versa. However, its relatively high capital cost limits its widespread deployment. Economic analysis reveals that a high-power density VRFB with decreased cell stack size can dramatically reduce the cost. The energy efficiency of a VRFB primarily depends on the kinetics of vanadium redox reactions that take place in the stack. Therefore, studying the effect of surface chemistry of electrodes on the kinetics of each …


Formulating 3-Chloropropyltriethoxysilane Modified Silica Nanoparticle Sprays As Hydrophobic Transparent Coatings Onto Cotton Textiles, Mikaela C. S. Mendoza, Gilbert U. Yu 2021 Ateneo de Manila University

Formulating 3-Chloropropyltriethoxysilane Modified Silica Nanoparticle Sprays As Hydrophobic Transparent Coatings Onto Cotton Textiles, Mikaela C. S. Mendoza, Gilbert U. Yu

Chemistry Faculty Publications

Cotton textiles were transformed into hydrophobic fabrics via the application of 3-chloropropylthriethoxysilane-functionalized silica nanoparticle spray coatings. Silica particles were measured to be < 50 nm, as determined by dynamic light scattering (DLS). The incorporation of hexadecyltrimethylammonium bromide (HTAB), a surfactant, into the nanosilica alcohol-based sprays resulted in a suspension that was stable for at least a week. Stability and turbidity tests of samples point to smaller particle size (silica nanoparticles = 24.3 ± 8.5 nm) as the main contributor to possibly providing transparency, as evidenced when sprayed in colored (black) textiles, while still contributing to hydrophobicity/ superhydrophobicity of the cloth.


Synthesis And Electrochemical Study Of Cuau Nanodendrites For Co2 Reduction, Dylan Siltamaki 2021 Chinese Chemical Society | Xiamen University

Synthesis And Electrochemical Study Of Cuau Nanodendrites For Co2 Reduction, Dylan Siltamaki

Journal of Electrochemistry

The conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added products is an interesting approach for carbon-containing fuel synthesis using renewable and clean energy. The electrochemical reduction of CO2 is one of the promising strategies for the storage of intermittent renewable energy resources. The development of electrocatalysts with high activity and stability is vital in the electrochemical CO2 reduction process. In this study, copper and gold alloyed (CuAu) electrodes with nanodendritic structures were synthesized using a facile electrodeposition method. The CuAu nanodendrites with the atomic ratio of Cu to Au being approximately 1:1 …


Facile Synthesis Of Metal Oxides, Sulphides, And Phosphides For Enhanced Energy Applications, Alfred Nkhama 2021 Pittsburg State University

Facile Synthesis Of Metal Oxides, Sulphides, And Phosphides For Enhanced Energy Applications, Alfred Nkhama

Electronic Theses & Dissertations

An access to reliable, sustainable, eco-friendly and cost-effective energy supply is being challenged by the global increase in population and the rapid technological advancement. Sophisticated systems, machinery and various devices being innovated, require the steady energy supply for their operations and applicability. To have reliable energy, numerous researches are being conducted through various approaches across the world. In this research work, the facile approach in investigating and tuning the materials properties was employed to improve energy properties of metal oxides. Nanostructured NiFe-oxide and CoFe-oxide were synthesized using a facile coprecipitation method. It was revealed that; nanostructured materials have favorable structures …


Data-Driven Approaches To Complex Materials: Applications To Amorphous Solids, Dil Kumar Limbu 2021 The University of Southern Mississippi

Data-Driven Approaches To Complex Materials: Applications To Amorphous Solids, Dil Kumar Limbu

Dissertations

While conventional approaches to materials modeling made significant contributions and advanced our understanding of materials properties in the past decades, these approaches often cannot be applied to disordered materials (e.g., glasses) for which accurate total-energy functionals or forces are either not available or it is infeasible to employ due to computational complexities associated with modeling disordered solids in the absence of translational symmetry. In this dissertation, a number of information-driven probabilistic methods were developed for the structural determination of a range of materials including disordered solids to transition metal clusters. The ground-state structures of transition-metal clusters of iron, nickel, and …


Synthesis, Characterization, And Applications Of Nucleobase-Functionalized Conjugated Polymers, Sina Sabury 2021 University of Tennessee, Knoxville

Synthesis, Characterization, And Applications Of Nucleobase-Functionalized Conjugated Polymers, Sina Sabury

Doctoral Dissertations

Understanding the effect of the functional groups at the terminus of the side chains is important for developing conjugated polymers through side chain engineering. Nucleobases, which are known for their multi-functionality, have not been deeply studied as functionality in conjugated polymers due to synthetic challenges. The overarching goal of my dissertation is to design, synthesize, characterize conjugated polymers bearing nucleobase functionality in their side chains and demonstrate their utility in various applications. Stille cross-coupling and direct arylation polymerization are used to synthesize adenine- and thymine-containing conjugated polymers. Monomer design requirements for successful polymerization are studied and conditions that optimize polymerization …


Employing Confidence Intervals In Electron Microscopy Digital Image Analysis To Promote Better Analytical Practices, Diana s. Arndt 2021 University of Pennsylvania

Employing Confidence Intervals In Electron Microscopy Digital Image Analysis To Promote Better Analytical Practices, Diana S. Arndt

Master of Chemical Sciences Capstone Projects

As the range of applications for nanoparticle systems continues to expand, the importance of providing reliable, informative, quantitative characterization for nanomaterial categorization and quality control continues to increase. Transmission Electron Microscopy (TEM) is a standard characterization technique that provides nanoscale image representations of a thin nanomaterial sample and has the potential to provide quantitative information with substantial digital image analysis. Modern semi-automatic TEM image analysis processes, such as the popular software ImageJ, aim to improve on outdated manual processes by incorporating user input with automated algorithms, decreasing the potential for human error and time expense. These processes segregate particles from …


Development Of Biomaterials For Drug Delivery, Raquel De Castro 2021 University of Arkansas, Fayetteville

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Comparative Analysis Of Azo Dye Restriction In The International Textile Industry, Kayla DeMark 2021 University of Arkansas, Fayetteville

Comparative Analysis Of Azo Dye Restriction In The International Textile Industry, Kayla Demark

Apparel Merchandising and Product Development Undergraduate Honors Theses

Azo dyes are the most used type of dye in the textile industry. Some of these dyes have the potential to be extremely toxic to both human health and the environment. While regulations of these dyes vary across the world, it is suggested that not enough is being done to protect consumers and the environment from potentially harmful azo dyes (Rawat et al., 2016). It is the responsibility of apparel companies to ensure that their products that contain azo dyes are safe for consumers.

The purpose of this study was to understand how azo dyes and their by-products are restricted …


Digital Commons powered by bepress