Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

3,583 Full-Text Articles 8,725 Authors 691,761 Downloads 129 Institutions

All Articles in Materials Chemistry

Faceted Search

3,583 full-text articles. Page 2 of 119.

Highly Efficient Dopamine Sensing With A Carbon Nanotube-Encapsulated Metal Chalcogenide Nanostructure, Harish Singh, Jiandong Wu, Kurt A.L. Lagemann, Manashi Nath 2024 Missouri University of Science and Technology

Highly Efficient Dopamine Sensing With A Carbon Nanotube-Encapsulated Metal Chalcogenide Nanostructure, Harish Singh, Jiandong Wu, Kurt A.L. Lagemann, Manashi Nath

Chemical and Biochemical Engineering Faculty Research & Creative Works

Carbon nanotube-encapsulated nickel selenide composite nanostructures were used as nonenzymatic electrochemical sensors for dopamine detection. These composite nanostructures were synthesized through a simple, one-step, and environmentally friendly chemical vapor deposition method, wherein the CNTs were formed in situ from pyrolysis of a carbon-rich metallo-organic precursor. The composition and morphology of these hybrid NiSe2-filled carbon nanostructures were confirmed by powder X-ray diffraction, Raman, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy images. Electrochemical tests demonstrated that the as-synthesized hybrid nanostructures exhibited outstanding electrocatalytic performance toward dopamine oxidation, with a high sensitivity of 19.62 μA μM-1 cm-2, low detection limit, broad linear …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng 2024 aState Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, Fujian, China

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang 2024 Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 201800, China

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


Measurements Of Rate Constant For Electrode Reactions, Lian-Huan Han, Jia-Yao Guo, Miao-Miao Cui 2024 Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, Fujian, China

Measurements Of Rate Constant For Electrode Reactions, Lian-Huan Han, Jia-Yao Guo, Miao-Miao Cui

Journal of Electrochemistry

Standard electron-transfer rate constant is one of the intrinsic properties for an electrochemical reaction, which is significant in the study of electrode kinetics. It is a key criterion for one to clarify the mechanism and pathway of a specific electrochemical reaction, and to screening and design the electrocatalysts and battery materials. Herein, we will introduce the measuring methods of rate constant for electrode reactions, including polarization curve, rotating disk electrode, ultramicroelectrode, scanning electrochemical microscopy, electrochemical impedance spectroscopy, current step, potential step and cyclic voltammetry, etc., to provide a guide to investigate electrode kinetics for graduate students and researchers in the …


Mesoporous Re0.5ce0.5o2-X Fluorite Electrocatalysts For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Harish Singh, Sam Spinuzzi, Manashi Nath, Katharine Page 2024 Missouri University of Science and Technology

Mesoporous Re0.5ce0.5o2-X Fluorite Electrocatalysts For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Harish Singh, Sam Spinuzzi, Manashi Nath, Katharine Page

Chemistry Faculty Research & Creative Works

Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO2 reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO2 fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in …


Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave 2024 The Graduate Center, City University of New York

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society of Electrochemistry 2024 Chinese Chemical Society | Xiamen University

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma 2024 Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang 2024 New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, Guangdong, China

Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang

Journal of Electrochemistry

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress …


Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal 2024 Key Laboratory of Advanced Fuel Cells and Electrolyzers cell Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China

Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal

Journal of Electrochemistry

In this work, the long-term stability and degradation mechanism of a direct internal-reforming solid oxide fuel cell stack (IR-SOFC stack) using hydrogen-blended methane steam reforming were investigated. An overall degradation rate of 2.3%·kh–1 was found after the stack was operated for 3000 hours, indicating a good long-term stability. However, the voltages of the two cells in the stack were increased at the rates of 3.38 mV·kh–1 and 3.78 mV·kh–1, while the area specific resistances of the three metal interconnects in the stack were increased to 0.276 Ω·cm2, 0.254 Ω·cm2 and 0.249 Ω·cm2 …


Analyzing Novel Metal Alloys For Glucose Sensing And Electrocatalysis, Anna Grace Boddy 2024 Rowan University

Analyzing Novel Metal Alloys For Glucose Sensing And Electrocatalysis, Anna Grace Boddy

Theses and Dissertations

In pharmaceutical and medicinal chemistry, metals and metal alloys often receive less attention compared to biological or organic compounds due to many factors including toxicity in the body for drug development or the cost of these metals. However, metals can play an important role in pharmaceuticals, having an impact on original cancer drugs, such as platinum used for head and neck tumors. Electrocatalysis is also another topic that receives less attention over topics such as chromatography in pharmaceuticals due to its potential toxic catalysts and voltages that could be harmful to the body. Electrocatalytic sensors can play an important role …


Quaternary Rare-Earth Oxyselenides Re4ga2se7o2 (Re = Pr, Nd) With Trigonal Bipyramidal Gase5 Units: Evaluation Of Optical, Thermoelectric, And Electrocatalytic Properties, Vidyanshu Mishra, Ibrahim Munkaila Abdullahi, Dundappa Mumbaraddi, Mohammed Jomaa, Louis Guérin, Manashi Nath, Arthur Mar 2024 Missouri University of Science and Technology

Quaternary Rare-Earth Oxyselenides Re4ga2se7o2 (Re = Pr, Nd) With Trigonal Bipyramidal Gase5 Units: Evaluation Of Optical, Thermoelectric, And Electrocatalytic Properties, Vidyanshu Mishra, Ibrahim Munkaila Abdullahi, Dundappa Mumbaraddi, Mohammed Jomaa, Louis Guérin, Manashi Nath, Arthur Mar

Chemistry Faculty Research & Creative Works

Phase-pure samples and single crystals of the rare-earth oxyselenides RE4Ga2Se7O2 (RE = Pr, Nd) were prepared by reactions at 950 °C. They adopt a new structure type (orthorhombic, space group Pnma, a = 11.721(2)-11.683(2) Å, b = 3.9882(7)-3.9667(7) Å, c = 29.644(5)-29.581(5) Å, Z = 4) consisting of RESe6 trigonal prisms, GaSe4 tetrahedra, and GaSe5 trigonal bipyramids linked to form corrugated layers between which strips of edge-sharing RE4O tetrahedra are inserted. The bonding character is mostly ionic within RE-O and RE-Se blocks but mostly covalent with Ga-Se blocks, …


Compton Scattering Of Mammographic Soft X-Ray Beams By Alkali And Transition Metal Salt Filters Produce X-Ray Interference Zones That May Have Treatment Potential For Localized Cancer Lesions, Subhendra N. Sarkar, Eric Lobel, Sabina Rakhmatova, Derbie Desir, Somdat Kissoon, Daler Djuraev, Katie Tam 2024 CUNY New York City College of Technology

Compton Scattering Of Mammographic Soft X-Ray Beams By Alkali And Transition Metal Salt Filters Produce X-Ray Interference Zones That May Have Treatment Potential For Localized Cancer Lesions, Subhendra N. Sarkar, Eric Lobel, Sabina Rakhmatova, Derbie Desir, Somdat Kissoon, Daler Djuraev, Katie Tam

Publications and Research

In breast x-ray imaging scattered radiation adds 50% of harmful radiation dose from anisotropic Compton scattering mechanism. We have been working with double layered inorganic salt materials that can induce Compton scattering to the incident mammographic x ray beams (in 20-30 kVp range) with adequate isotropy (angular control). Typically metal nitrates and alkali halide salt layers are shown here to cause low energy radiation interference zones with high and low photon intensities and local flux heterogeneity in terms of flux covariance. Spatial variation of low energy photon flux creates concentrated and sparse radiation zones that may be used to induce …


Data For Dopant-Induced Energetic Disorder In Conjugated Polymers: Determinant Roles Of Polymer-Dopant Distance And Composite Electronic Structures, Michael Lu Diaz, Muhamed Duhandzic, Simon Harrity, Subhayan Samanta, Zlatan Aksamija, Dhandapani Venkataraman 2024 University of Massachusetts Amherst

Data For Dopant-Induced Energetic Disorder In Conjugated Polymers: Determinant Roles Of Polymer-Dopant Distance And Composite Electronic Structures, Michael Lu Diaz, Muhamed Duhandzic, Simon Harrity, Subhayan Samanta, Zlatan Aksamija, Dhandapani Venkataraman

Data and Datasets

The data here is the raw data for Figures in the publication "Dopant-Induced Energetic Disorder in Conjugated Polymers: Determinant Roles of Polymer−Dopant Distance and Composite Electronic Structures" In the Journal of Physical Chemistry C. (https://doi.org/10.1021/acs.jpcc.3c07197)


Tailored (La0.2pr0.2nd0.2tb0.2dy0.2)2ce2o7 As A Highly Active And Stable Nanocatalyst For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Palani Raja Jothi, Bo Jiang, Manashi Nath, Katharine Page 2024 Missouri University of Science and Technology

Tailored (La0.2pr0.2nd0.2tb0.2dy0.2)2ce2o7 As A Highly Active And Stable Nanocatalyst For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Palani Raja Jothi, Bo Jiang, Manashi Nath, Katharine Page

Chemistry Faculty Research & Creative Works

Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self-assembly (EISA) can be used to synthesize highly porous and high surface area cerate-based fluorite nano catalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nano catalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is …


Gas Evolution Of A Nickel-Zinc Cell, Niklas Landgraf 2024 Missouri State University

Gas Evolution Of A Nickel-Zinc Cell, Niklas Landgraf

MSU Graduate Theses

Batteries are a foundational technology in some of the industries most essential to humanity. Often, their advancement to achieve better performance impacts human lives positively. There are a wide variety of battery chemistries that have been utilized, and the differences in their properties have caused them to be used in many distinct niche applications. Nickel-Zinc (NiZn) batteries are desirable because of their recyclable materials, high cell voltage, and high cycle-life. However, it experiences undesirable shape-change of its electrode materials and gas production due to the electrolysis of the aqueous electrolyte. These can lead to a decrease in capacity over many …


Understanding Of Processing Additives Influence In Tin Halide Perovskites: Chemistry, Defect, And Photovoltaic Performance, Syed Rahmath Ullah Joy 2024 University of Kentucky

Understanding Of Processing Additives Influence In Tin Halide Perovskites: Chemistry, Defect, And Photovoltaic Performance, Syed Rahmath Ullah Joy

Theses and Dissertations--Chemistry

Metal halide perovskite semiconductors have attracted much interest for various applications, such as solar cells, light emitting diodes, photodetectors, and lasers, due to their excellent optoelectronic properties. Photovoltaic cell development is centered on Pb-based perovskites, which have equal photovoltaic performance compared to the traditional silicon photovoltaic. But concerns arising from the usage of toxic lead metal have motivated the research community to seek an alternative derivative. Among those, tin halide perovskites show much promise as an alternative to Pb-counterparts due to their ideal bandgap for single junction photovoltaics and similar optoelectronic properties to Pb perovskites. Nevertheless, tin perovskites suffer from …


Solar Enhanced Oxygen Evolution Reaction With Transition Metal Telluride, Harish Singh, Taishi Higuchi-Roos, Fabrice Roncoroni, David Prendergast, Manashi Nath 2024 Missouri University of Science and Technology

Solar Enhanced Oxygen Evolution Reaction With Transition Metal Telluride, Harish Singh, Taishi Higuchi-Roos, Fabrice Roncoroni, David Prendergast, Manashi Nath

Chemistry Faculty Research & Creative Works

The Photo-Enhanced Electrocatalytic Method of Oxygen Evolution Reaction (OER) Shows Promise for Enhancing the Effectiveness of Clear Energy Generation through Water Splitting by using Renewable and Sustainable Source of Energy. However, Despite Benefits of Photo electrocatalytic (PEC) Water Splitting, its Uses Are Constrained by its Low Efficiency as a Result of Charge Carrier Recombination, a Large overpotential, and Sluggish Reaction Kinetics. Here, We Illustrate that Nickel Telluride (NiTe) Synthesized by Hydrothermal Methods Can Function as an Extremely Effective Photo-Coupled Electrochemical Oxygen Evolution Reaction (POER) Catalyst. in This Study, NiTe Was Synthesized by Hydrothermal Method at 145°C within Just an Hour …


Lessons Learned From Laboratory Study And Field Application Of Re-Crosslinkable Preformed Particle Gels Rppg For Conformance Control In Mature Oilfields With Conduits/Fractures/Fracture-Like Channels, Baojun Bai, Thomas P. Schuman, David Smith, Tao Song 2024 Missouri University of Science and Technology

Lessons Learned From Laboratory Study And Field Application Of Re-Crosslinkable Preformed Particle Gels Rppg For Conformance Control In Mature Oilfields With Conduits/Fractures/Fracture-Like Channels, Baojun Bai, Thomas P. Schuman, David Smith, Tao Song

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

This Paper Surveys the Role of Re-Crosslink able Preformed Particle Gels (RPPG) in Addressing Conformance Challenges within Mature Oilfields. Despite Widespread Preformed Particle Gel (PPG) Application in 15,000+ Wells, their Limitations in Sealing Fractures and Conduits Prevalent in Mature Reservoirs Have Driven the Development of RPPG Formulations. Synthesized in Various Sizes from Micrometer to Millimeter Levels, These Environmentally Friendly RPPGs Are Tailored for Diverse Reservoir Conditions. Findings Showcase the Successful Laboratory-Scale Creation and Upscaling of RPPG Products, Offering Adaptability to Temperatures from 20 to 175°C, Customizable Sizes, Swelling Ratios (5 to 40 Times), and Re-Crosslinking Times Spanning Minutes to Days. …


Conversion Of Cellulose To 5-Hydroxymethylfurfural As Sustainable Energy: A Bibliometric Analysis By Vosviewer, Royyan Faradis, Ardiansyah Bagus Suryanto, Irmina Kris Murwani 2023 Institut Teknologi Sepuluh Nopember

Conversion Of Cellulose To 5-Hydroxymethylfurfural As Sustainable Energy: A Bibliometric Analysis By Vosviewer, Royyan Faradis, Ardiansyah Bagus Suryanto, Irmina Kris Murwani

Journal of Environmental Science and Sustainable Development

The developments of the global economy and society impact resources and the environment. This condition requires an alternative to find new, safe, and sustainable energy types. The conversion of cellulose to 5-hydroxymethylfurfural (5-HMF) has become a significant area of research interest. It has triggered the development of research directions related to biomass and energy because it can be an intermediary source for making polymers, solvents, pharmaceuticals, and biofuels. The primary objective of this study is to give a bibliometric analysis of 1753 reports on the development of research on cellulose conversion to 5-HMF from 1965 to 2021. The data were …


Digital Commons powered by bepress