Open Access. Powered by Scholars. Published by Universities.®

VLSI and Circuits, Embedded and Hardware Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

627 Full-Text Articles 815 Authors 561,063 Downloads 61 Institutions

All Articles in VLSI and Circuits, Embedded and Hardware Systems

Faceted Search

627 full-text articles. Page 15 of 28.

Controlling And Processing Core For Wireless Implantable Telemetry System, Naeeme Modir 2016 The University of Western Ontario

Controlling And Processing Core For Wireless Implantable Telemetry System, Naeeme Modir

Electronic Thesis and Dissertation Repository

Wireless implantable telemetry systems are suitable choices for monitoring various physiological parameters such as blood pressure and volume. These systems typically compose of an internal device implanted into a living body captures the physiological data and sends them to an external base station located outside of the body for further processing. The internal device usually consists of a sensor interface to convert the collected data to electrical signals; a digital core to digitize the analog signals, process them and prepare them for transmission; an RF front-end to transmit the data outside the body and to receive the required commands from …


Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism In Spiking Neural Networks, Shrihari Sridharan, Gopalakrishnan Srinivasan, Kaushik Roy 2016 Purdue University

Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism In Spiking Neural Networks, Shrihari Sridharan, Gopalakrishnan Srinivasan, Kaushik Roy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Spiking Neural Networks (SNNs) are one of the recent advances in machine learning that aim to further emulate the computations performed in the human brain. The efficiency of such networks stems from the fact that information is encoded as spikes, which is a paradigm shift from the computing model of the traditional neural networks. Spike Timing Dependent Plasticity (STDP), wherein the synaptic weights interconnecting the neurons are modulated based on a pair of pre- and post-synaptic spikes is widely used to achieve synaptic learning. The learning mechanism is extremely sensitive to the parameters governing the neuron dynamics, the extent of …


Low-Noise Micro-Power Amplifiers For Biosignal Acquisition, Tan Yang 2016 University of Tennessee, Knoxville

Low-Noise Micro-Power Amplifiers For Biosignal Acquisition, Tan Yang

Doctoral Dissertations

There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors.

Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. …


Design And Analysis Of An Asynchronous Microcontroller, Michael Hinds 2016 University of Arkansas, Fayetteville

Design And Analysis Of An Asynchronous Microcontroller, Michael Hinds

Graduate Theses and Dissertations

This dissertation presents the design of the most complex MTNCL circuit to date. A fully functional MTNCL MSP430 microcontroller is designed and benchmarked against an open source synchronous MSP430. The designs are compared in terms of area, active energy, and leakage energy. Techniques to reduce MTNCL pipeline activity and improve MTNCL register file area and power consumption are introduced. The results show the MTNCL design to have superior leakage power characteristics. The area and active energy comparisons highlight the need for better MTNCL logic synthesis techniques.


Asynchronous Data Processing Platforms For Energy Efficiency, Performance, And Scalability, Liang Men 2016 University of Arkansas, Fayetteville

Asynchronous Data Processing Platforms For Energy Efficiency, Performance, And Scalability, Liang Men

Graduate Theses and Dissertations

The global technology revolution is changing the integrated circuit industry from the one driven by performance to the one driven by energy, scalability and more-balanced design goals. Without clock-related issues, asynchronous circuits enable further design tradeoffs and in operation adaptive adjustments for energy efficiency. This dissertation work presents the design methodology of the asynchronous circuit using NULL Convention Logic (NCL) and multi-threshold CMOS techniques for energy efficiency and throughput optimization in digital signal processing circuits. Parallel homogeneous and heterogeneous platforms implementing adaptive dynamic voltage scaling (DVS) based on the observation of system fullness and workload prediction are developed for balanced …


Compact Modeling Of Sic Insulated Gate Bipolar Transistors, Sonia Perez 2016 University of Arkansas, Fayetteville

Compact Modeling Of Sic Insulated Gate Bipolar Transistors, Sonia Perez

Graduate Theses and Dissertations

This thesis presents a unified (n-channel and p-channel) silicon/silicon carbide Insulated Gate Bipolar Transistor (IGBT) compact model in both MAST and Verilog-A formats. Initially, the existing MAST model mobility equations were updated using recently referenced silicon carbide (SiC) data. The updated MAST model was then verified for each device tested. Specifically, the updated MAST model was verified for the following IGBT devices and operation temperatures: n-channel silicon at 25 ˚C and at 125 ˚C; n-channel SiC at 25 ˚C and at 175 ˚C; and p-channel SiC at 150 ˚C and at 250 ˚C. Verification was performed through capacitance, DC output …


Hot Wire Anemometer, Michael S. Potash, Albert D. Helfrick 2016 Embry-Riddle Aeronautical University

Hot Wire Anemometer, Michael S. Potash, Albert D. Helfrick

Publications

A hot wire anemometer circuit has a calibrate subcircuit and an operate subcircuit which are selectively invoked via a user-activate mode switch. The calibrate subcircuit includes a detector configured to compare an amplified sensor voltage with an amplified drive voltage and output an indicator signal when the two voltages match. The drive voltage is derived from a user-adjusted drive resistance of a bridge subcircuit. The operate circuit includes a feedback loop which provides a signal to a bride node of a bridge circuit. After a sensor is connected to the anemometer circuit, the drive resistance is adjusted until the indicator …


Development Of A Portable Cmos Time-Domain Fluorescence Lifetime Imager, Hongtao Wang 2016 University of Massachusetts Amherst

Development Of A Portable Cmos Time-Domain Fluorescence Lifetime Imager, Hongtao Wang

Doctoral Dissertations

Modern laboratory equipments to measure the excited-state lifetime of fluorophores usually include an expensive picosecond pulsed-laser excitation source, a fragile photomultiplier tube, and a large instrument body for optics. A portable and robust device to make fluorescence lifetime measurement in nanosecond scale is of great attraction for chemists and biologists. This dissertation reports the development of a portable LED time-domain fluorimeter from an all-solid-state discrete-component prototype to its advanced CMOS integrated circuit implementation. The motivation of the research is to develop a multiplexed fluorimeter for point-of-care diagnosis. Instruments developed by this novel method have higher fill factor, are more portable, …


El Capitán: Cal Poly Rose Float Digital Drive System, Gregory Raffi Baghdikian 2016 California Polytechnic State University, San Luis Obispo

El Capitán: Cal Poly Rose Float Digital Drive System, Gregory Raffi Baghdikian

Computer Engineering

In today’s world of smartphones, self-driving cars, and internet-connected coffee makers, it seems as if computers are contained in everything around us. These “embedded systems” have become critical components of our lives, improving everything about the things they control, from cost, to speed, to simplicity. One area that embedded systems has hardly gained a foothold is in the world of floatbuilding. Most of the floats in the Tournament of Roses Parade, including the one built jointly by Cal Poly San Luis Obispo and Cal Poly Pomona, are technologically very simple, using mostly analog components and rudimentary discrete digital logic to …


Design Of An Integrated Acceleration Acquisition Subsystem To Satisfy High-Speed And Low-Area Requirements For Cubesats, Ryan J. Rumsey 2016 California Polytechnic State University, San Luis Obispo

Design Of An Integrated Acceleration Acquisition Subsystem To Satisfy High-Speed And Low-Area Requirements For Cubesats, Ryan J. Rumsey

Master's Theses

Cal Poly San Luis Obispo’s PolySat team is designing the Multipurpose Orbital Spring Ejection System (MOSES) in order to record acceleration data during the launch of CubeSats as well as to provide GPS coordinates to locate the position of CubeSats once they are injected into orbit. This work focuses on the design and development of the acceleration data acquisition (DAQ) subsystem of MOSES. This subsystem is designed around the need for a high-speed sampling system of at least 200 kHz across four channels of data, plus low-area limitations in the MOSES form factor which is roughly half the size of …


A Stroke Therapy Brace Design, Evan Kirkbride 2016 California Polytechnic State University, San Luis Obispo

A Stroke Therapy Brace Design, Evan Kirkbride

Electrical Engineering

Victims of stroke often have difficulty with rehabilitation. With limited movement on their affected arm, patients often do not want to move much for physical therapy. In this project, we design a robotic brace that helps stroke patients move their arm more effectively in a reaching or pulling motion. By giving patients more movement in their affected arm than they would have otherwise, patients gain more from rehabilitation. The brace also adapts to the patient’s needs, providing more inclination or resistance as needed for their physical therapy. This kind of therapy engages patients rather than relying on their likely dwindled …


Cal Poly Supermileage Electronic Fuel Injection, Alexander Pink 2016 California Polytechnic State University, San Luis Obispo

Cal Poly Supermileage Electronic Fuel Injection, Alexander Pink

Electrical Engineering

Cal Poly Supermileage is a student-run engineering club that builds prototype gasoline vehicles optimized maximum fuel-efficiency. To power their vehicles, the Supermileage team makes use of single-cylinder, 4-stroke, electronically fuel-injected (EFI) gasoline engines. This report details the development, iterative design & test cycles, and integration of an EFI system for the Supermileage club. This project develops an EFI system that interfaces to the most common types of sensors found in the low-power Supermileage-range of engines, including throttle-position sensors, manifold absolute pressure sensors, gear-tooth hall-effect sensors, variable-reluctance position sensors, engine coolant temperature sensors, intake air temperature sensors, and exhaust oxygen sensors. …


Analog Vlsi Circuit Design: Linear Voltage Regulator, Brett Colteaux, Kirstie Fung 2016 California Polytechnic State University, San Luis Obispo

Analog Vlsi Circuit Design: Linear Voltage Regulator, Brett Colteaux, Kirstie Fung

Electrical Engineering

The project outlined in this report is the design, layout, and routing of a linear voltage regulator using Cadence VLSI (very-large-scale integration) software. The design specifications for this regulator are as follows: input voltage range of 5V + 1V, load current capabilities of 150mA, and output voltage range of 1.15V to 3.3V. Furthermore, the design of this circuit was broken into three main sub-circuits: an error amplifier, bandgap reference circuitry, and biasing circuitry for the bandgap. Together, these sub-circuits integrated to make the final design.

Research for different topologies for a voltage regulator was done and the Brokaw bandgap reference …


Design And Implementation Of An Integrated Biosensor Platform For Lab-On-A-Chip Diabetic Care Systems, Khandaker Abdullah Al Mamun 2016 University of Tennessee - Knoxville

Design And Implementation Of An Integrated Biosensor Platform For Lab-On-A-Chip Diabetic Care Systems, Khandaker Abdullah Al Mamun

Doctoral Dissertations

Recent advances in semiconductor processing and microfabrication techniques allow the implementation of complex microstructures in a single platform or lab on chip. These devices require fewer samples, allow lightweight implementation, and offer high sensitivities. However, the use of these microstructures place stringent performance constraints on sensor readout architecture. In glucose sensing for diabetic patients, portable handheld devices are common, and have demonstrated significant performance improvement over the last decade. Fluctuations in glucose levels with patient physiological conditions are highly unpredictable and glucose monitors often require complex control algorithms along with dynamic physiological data. Recent research has focused on long term …


Correcting Current Imbalances In Three-Phase Four-Wire Distribution Systems, Vinson Joseph Jones 2016 University of Arkansas, Fayetteville

Correcting Current Imbalances In Three-Phase Four-Wire Distribution Systems, Vinson Joseph Jones

Graduate Theses and Dissertations

The objective of this thesis is to present the theory, design, construction, and testing of a proposed solution to unbalanced current loading on three-phase four-wire systems. The Unbalanced Current Static Compensator is the name of the prototype; herein referred to as the UCSC. The purpose of this prototype is to redistribute current between the three phases of a distribution system. Through this redistribution, negative- and zero-sequence currents are eliminated and a balanced system is seen upstream from the point of installation.

The UCSC consists of three separate single-phase H-bridge inverters that all share the same dc-link capacitor. Each of these …


Prevention Of Drone Jamming Using Hardware Sandboxing, Joshua Mead 2016 University of Arkansas, Fayetteville

Prevention Of Drone Jamming Using Hardware Sandboxing, Joshua Mead

Graduate Theses and Dissertations

In this thesis, we concern ourselves with the security of drone systems under jamming-based attacks. We explore a relatively new concept we previously devised, known as hardware sandboxing, to provide runtime monitoring of boundary signals and isolation through resource virtualization for non-trusted system-on-chip (SoC) components. The focus of this thesis is the synthesis of this design and structure with the anti-jamming, security needs of drone systems. We utilize Field Programmable Gate Array (FPGA) based development and target embedded Linux for our hardware sandbox and drone hardware/software system.

We design and implement our working concept on the Digilent Zybo FPGA, which …


Design Of An Assistive Technology Adaptive Switch Using An Inertial Measurement Unit, Ethan Storm Williams 2016 University of Arkansas, Fayetteville

Design Of An Assistive Technology Adaptive Switch Using An Inertial Measurement Unit, Ethan Storm Williams

Graduate Theses and Dissertations

A new assistive technology switch for people with disabilities was developed utilizing an Inertial Measurement Unit (IMU) as the sensor technology. The hardware can be customized through firmware to provide custom switch activations on a person by person basis. The firmware is customized to recognize specific data features in the IMU data which identify the desired switch activation movement performed by the user. In this way, the switch can be adapted to activate based on the movements of the user. During this research, the generic hardware platform, including the IMU sensor technology and Bluetooth communications, was designed and tested. An …


Conversion Of Digital Circuits Labs, Caleb N. Taber 2016 ETSU

Conversion Of Digital Circuits Labs, Caleb N. Taber

Undergraduate Honors Theses

The engineering technology department at ETSU currently lacks a modern method to teach digital circuits. The aim of this thesis is to convert our current digital circuits labs to equivalent labs suited to run on the Basys 3. The Basys has several advantages over the aging NI Elvis boards (and now just breadboards) currently in use. The first advantage is that the Basys gives students a taste of FPGA programming without being overwhelmingly; like the systems currently in place for the digital signal processing class. The Basys is also a more modern system; our current integrated circuit and breadboard system …


A High Performance Advanced Encryption Standard (Aes) Encrypted On-Chip Bus Architecture For Internet-Of-Things (Iot) System-On-Chips (Soc), Xiaokun Yang 2016 Florida International University

A High Performance Advanced Encryption Standard (Aes) Encrypted On-Chip Bus Architecture For Internet-Of-Things (Iot) System-On-Chips (Soc), Xiaokun Yang

FIU Electronic Theses and Dissertations

With industry expectations of billions of Internet-connected things, commonly referred to as the IoT, we see a growing demand for high-performance on-chip bus architectures with the following attributes: small scale, low energy, high security, and highly configurable structures for integration, verification, and performance estimation.

Our research thus mainly focuses on addressing these key problems and finding the balance among all these requirements that often work against each other. First of all, we proposed a low-cost and low-power System-on-Chips (SoCs) architecture (IBUS) that can frame data transfers differently. The IBUS protocol provides two novel transfer modes – the block and state …


Implementation And Performance Of Factorized Backprojection On Low-Cost Commercial-Off-The-Shelf Hardware, Alec C. Rasmussen 2016 Air Force Institute of Technology

Implementation And Performance Of Factorized Backprojection On Low-Cost Commercial-Off-The-Shelf Hardware, Alec C. Rasmussen

Theses and Dissertations

Traditional Synthetic Aperture Radar (SAR) systems are large, complex, and expensive platforms that require significant resources to operate. The size and cost of the platforms limits the potential uses of SAR to strategic level intelligence gathering or large budget research efforts. The purpose of this thesis is to implement the factorized backprojection SAR image processing algorithm in the C++ programming language and test the code's performance on a low cost, low size, weight, and power (SWAP) computer: a Raspberry Pi Model B. For a comparison of performance, a baseline implementation of filtered backprojection is adapted to C++ from pre-existing MATLAB® …


Digital Commons powered by bepress