Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

13,187 Full-Text Articles 18,533 Authors 5,340,884 Downloads 154 Institutions

All Articles in Chemical Engineering

Faceted Search

13,187 full-text articles. Page 6 of 435.

Method For Routine Density Measurement Of Sublimating Solid Carbon Dioxide (Dry Ice) For Cold-Chain Quality Control, Kimberly Hafner, Bruce A. Welt, William Pelletier 2022 University of Florida

Method For Routine Density Measurement Of Sublimating Solid Carbon Dioxide (Dry Ice) For Cold-Chain Quality Control, Kimberly Hafner, Bruce A. Welt, William Pelletier

Journal of Applied Packaging Research

With recent development of vaccines and biologics, interest in dry ice for cold chain shipping has increased. However, understanding of how dry ice properties relate to performance is not well understood. This study introduces a simple method for measuring a key property of dry ice that has been shown to correlate to performance. The method involves a variant of the water displacement method for determining volume, where dense solid particles are used in place of water for volume determination. Three particle types (sieved sand, glass beads, and stainless-steel shot) were tested for suitability with the particle displacement method. Items of …


Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei 2022 University of Massachusetts Amherst

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates.

Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces.

In Chapter 2, we demonstrate the preparation …


Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling And Mitochondrial Dysfunction, Sudha Sharma, Papori Sharma, Tara Bailey, Susmita Bhattarai, Utsab Subedi, Chloe Miller, Hosne Ara, Srivatsan Kidambi, Hong Sun, Manikandan Panchatcharam, Sumitra Miriyala 2022 Louisiana State University Health Sciences Center

Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling And Mitochondrial Dysfunction, Sudha Sharma, Papori Sharma, Tara Bailey, Susmita Bhattarai, Utsab Subedi, Chloe Miller, Hosne Ara, Srivatsan Kidambi, Hong Sun, Manikandan Panchatcharam, Sumitra Miriyala

Chemical and Biomolecular Engineering -- All Faculty Papers

Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the …


Fabricating 3-Dimensional Human Brown Adipose Microtissues For Transplantation Studies, Ou Wang, Li Han, Haishuang Lin, Mingmei Tian, Shuyang Zhang, Bin Duan, Soonkyu Chung, Chi Zhang, Xiaojun Lian, Yong Wang, Yuguo Lei 2022 University of Nebraska-Lincoln

Fabricating 3-Dimensional Human Brown Adipose Microtissues For Transplantation Studies, Ou Wang, Li Han, Haishuang Lin, Mingmei Tian, Shuyang Zhang, Bin Duan, Soonkyu Chung, Chi Zhang, Xiaojun Lian, Yong Wang, Yuguo Lei

Chemical and Biomolecular Engineering -- All Faculty Papers

Transplanting cell cultured brown adipocytes (BAs) represents a promising approach to prevent and treat obesity (OB) and its associated metabolic disorders, including type 2 diabetes mellitus (T2DM). However, transplanted BAs have a very low survival rate in vivo. The enzymatic dissociation during the harvest of fully differentiated BAs also loses significant cells. There is a critical need for novel methods that can avoid cell death during cell preparation, transplantation, and in vivo. Here, we reported that preparing BAs as injectable microtissues could overcome the problem. We found that 3D culture promoted BA differentiation and UCP-1 expression, and the optimal initial …


Insight Into Nano-Chemical Enhanced Oil Recovery From Carbonate Reservoirs Using Environmentally Friendly Nanomaterials, Ali Ahmadi, Abbas Khaksar Manshad, Jagar A. Ali, Stefan Iglauer, S. Mohammad Sajadi, Alireza Keshavarz, Amir H. Mohammadi 2022 Edith Cowan University

Insight Into Nano-Chemical Enhanced Oil Recovery From Carbonate Reservoirs Using Environmentally Friendly Nanomaterials, Ali Ahmadi, Abbas Khaksar Manshad, Jagar A. Ali, Stefan Iglauer, S. Mohammad Sajadi, Alireza Keshavarz, Amir H. Mohammadi

Research outputs 2022 to 2026

The use of nanoparticles (NPs) in enhanced oil recovery (EOR) processes is very effective in reducing the interfacial tension (IFT) and surface tension (ST) and altering the wettability of reservoir rocks. The main purpose of this study was to use the newly synthesized nanocomposites (KCl / SiO2 / Xanthan NCs) in EOR applications. Several analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) were applied to confirm the validity of the synthesized NCs. From the synthesized NCs, nanofluids were prepared at different concentrations of 100-2000 ppm and characterized using electrical conductivity, IFT, …


Detectability Of Wormholes Through Various Methods, Jonathan W. Keathley 2022 University of North Florida

Detectability Of Wormholes Through Various Methods, Jonathan W. Keathley

PANDION: The Osprey Journal of Research and Ideas

There are three methods that can possibly detect wormholes: Negative Temperature, Hawking/ Phantom Radiation, and iron emission lines. This paper discusses whether or not any of these three methods are useful ways to detect wormholes with today’s technology and if so, which one is the best and which is the worst. As it turns out, all of these methods have their flaws and impracticalities. After looking through all the evidence and comparing it to what capabilities we have currently, there is clearly a best and worst method. The best method to detect possible wormhole candidates is through the detection …


Tuning The Structural Properties Of Cellulose Acetate Thin Films: A Demonstration Of Confinement And Antiplasticization In Cellulose Acetate Butyrate, Keegan Reece Parkhurst 2022 Rose-Hulman Institute of Technology

Tuning The Structural Properties Of Cellulose Acetate Thin Films: A Demonstration Of Confinement And Antiplasticization In Cellulose Acetate Butyrate, Keegan Reece Parkhurst

Graduate Theses

No abstract provided.


Tuning The Structural Properties Of Cellulose Acetate Thin Films: A Demonstration Of Confinement And Antiplasticization In Cellulose Acetate Butyrate, Keegan Reece Parkhurst 2022 Rose-Hulman Institute of Technology

Tuning The Structural Properties Of Cellulose Acetate Thin Films: A Demonstration Of Confinement And Antiplasticization In Cellulose Acetate Butyrate, Keegan Reece Parkhurst

Graduate Theses - Chemical Engineering

No abstract provided.


Prototype Catalytic Membrane Reactor For Dimethyl Ether Synthesis Via Co2hydrogenation, Qiaobei Dong, Weiwei L. Xu, Xiao Fan, Huazheng Li, Naomi Klinghoffer, Travis Pyrzynski, Howard S. Meyer, Xinhua Liang, Miao Yu, Shiguang Li 2022 Missouri University of Science and Technology

Prototype Catalytic Membrane Reactor For Dimethyl Ether Synthesis Via Co2hydrogenation, Qiaobei Dong, Weiwei L. Xu, Xiao Fan, Huazheng Li, Naomi Klinghoffer, Travis Pyrzynski, Howard S. Meyer, Xinhua Liang, Miao Yu, Shiguang Li

Chemical and Biochemical Engineering Faculty Research & Creative Works

Dimethyl ether (DME) has become attractive as a potential environmentally friendly substitute for diesel and liquefied petroleum gas (LPG) due to its similar properties to those of LPG, high cetane number, but less carbon emissions. In this work, we developed a novel prototype-scale catalytic membrane reactor to synthesize DME directly from CO2and renewable H2, which could address the environmental and fuel security issues in a cost-effective way. This membrane reactor was equipped with superior hydrophilic NaA zeolite membranes and bifunctional Cu-ZnO-ZrO2-Al2O3/HZSM-5 catalysts. The effects of the reaction temperature and gas …


Mantle Dynamics Of The North China Craton: New Insights From Mantle Transition Zone Imaging Constrained By P-To-S Receiver Functions, Lin Liu, Stephen S. Gao, Kelly H. Liu, William L. Griffin, Sanzhong Li, Siyou Tong, Jieyuan Ning 2022 Missouri University of Science and Technology

Mantle Dynamics Of The North China Craton: New Insights From Mantle Transition Zone Imaging Constrained By P-To-S Receiver Functions, Lin Liu, Stephen S. Gao, Kelly H. Liu, William L. Griffin, Sanzhong Li, Siyou Tong, Jieyuan Ning

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Cratons are generally defined as stable continental blocks with a strong cratonic root that typically is at least ∼200 km thick. Many cratons have undergone little internal tectonism and destruction since their formation, but some of them, such as the eastern part of the North China Craton (NCC), the Dharwar Craton and the Wyoming Craton, have lost their thick cratonic root and become reactivated in recent geological history, leading to widespread Meso-Cenozoic volcanisms. The mechanisms responsible for such decratonization remain debated. To provide new constraints on models leading to decratonization, in this study we stack 612 854 source-normalized P-to-S conversions …


Estimation Of The Bubble Point Pressure Of Multicomponent Reservoir Hydrocarbon Fluids, Benjamin Sunday Usen, Chidi Obi 2022 Department of Pure and Industrial Chemistry, Faculty of Science, University of Port Harcourt, Choba 5323, Nigeria

Estimation Of The Bubble Point Pressure Of Multicomponent Reservoir Hydrocarbon Fluids, Benjamin Sunday Usen, Chidi Obi

Makara Journal of Science

This study developed a novel C-sharp (C#) programming language for the estimation of bubble point pressure (BPP) of various hydrocarbon mixtures at equilibrium state. The methodology was based on vapor–liquid equilibrium calculation using Peng Robinson equation of state implementation, thermodynamic equilibrium calculation and Newton-Raphson’s method for the successive substitution of the unknown variables. The equal fugacity constraint can be satisfied by obtaining the equilibrium which serves as a criterion for two or more phases to exist at equilibrium. The problem was resolved by searching for a pressure that will satisfy the two constraints. Complex calculation was performed by successively substituting …


Towards Environmentally Sustainable, High-Performance, Lightweight Composites For Automotive Applications, Jasmin Zamudio Vasquez 2022 Rowan University

Towards Environmentally Sustainable, High-Performance, Lightweight Composites For Automotive Applications, Jasmin Zamudio Vasquez

Theses and Dissertations

The increasing public demand in the world automotive industry to improve the environmental sustainability of their manufactured vehicles without sacrificing drivers' comfort and safety and the high cost of lightweight materials have driven researchers to reconsider materials used in the automotive application. Thus, this work aims toward the production of environmentally sustainable, high-performance, lightweight composites, utilizing recycled carbon fibers (RCFs) and pyrolyzed tire particles (PTPs) reclaimed from pyro-gasification of CFRP wastes and end-of-life tires (ELTs), respectively, as reinforcements for cardanol-based epoxy resins. The fabricated composites exhibited rubbery-like behavior at 25 °C. Spectroscopic, rheological, physical, thermal, thermomechanical, and mechanical characterizations were …


Accurate Predictions Of Thermoset Resin Glass Transition Temperatures From All-Atom Molecular Dynamics Simulation, Gregory Odegard, Sagar Patil, Prashik Gaikwad, Prathamesh Deshpande, Aaron Krieg, Sagar P. Shah, Aspen Reyes, Tarik Dickens, Julia A. King, Marianna Maiaru 2022 Michigan Technological University

Accurate Predictions Of Thermoset Resin Glass Transition Temperatures From All-Atom Molecular Dynamics Simulation, Gregory Odegard, Sagar Patil, Prashik Gaikwad, Prathamesh Deshpande, Aaron Krieg, Sagar P. Shah, Aspen Reyes, Tarik Dickens, Julia A. King, Marianna Maiaru

Michigan Tech Publications

To enable the design and development of the next generation of high-performance composite materials, there is a need to establish improved computational simulation protocols for accurate and efficient prediction of physical, mechanical, and thermal properties of thermoset resins. This is especially true for the prediction of glass transition temperature (Tg), as there are many discrepancies in the literature regarding simulation protocols and the use of cooling rate correction factors for predicting values using molecular dynamics (MD) simulation. The objectives of this study are to demonstrate accurate prediction the Tg with MD without the use of cooling rate correction factors and …


Design Of Solvent-Assisted Plastics Recycling: Integrated Economics And Environmental Impacts Analysis, Austin L. Lehr, Kayla L. Heider, Emmanuel A. Aboagye, John D. Chea, Jake P. Stengel, Pahola T. Benavides, Kirti Maheshkumar Yenkie 2022 Rowan University

Design Of Solvent-Assisted Plastics Recycling: Integrated Economics And Environmental Impacts Analysis, Austin L. Lehr, Kayla L. Heider, Emmanuel A. Aboagye, John D. Chea, Jake P. Stengel, Pahola T. Benavides, Kirti Maheshkumar Yenkie

Henry M. Rowan College of Engineering Faculty Scholarship

In 2018, the United States generated over 35. 7 million tons of plastic waste, with only 8.4% being recycled and the other 91.6% incinerated or disposed of in a landfill. The continued growth of the polymer market has raised concerns over the end of life of plastics. Currently, the waste management system is faced with issues of inefficient sorting methods and low-efficiency recycling methods when it comes to plastics recycling. Mechanical recycling is the commonest recycling method but presents a lower-valued recycled material due to the material incompatibilities introduced via the inefficient sorting methods. Chemical recycling offers a promising alternative …


A Cfd-Based Scaling Analysis On Liquid And Paint Droplets Moving Through A Weak Concurrent Airflow Stream, Masoud Arabghahestani, Nelson Akafuah, Tianxiang Li, Kozo Saito 2022 Institute of Research for Technology Development (IR4TD), University of Kentucky

A Cfd-Based Scaling Analysis On Liquid And Paint Droplets Moving Through A Weak Concurrent Airflow Stream, Masoud Arabghahestani, Nelson Akafuah, Tianxiang Li, Kozo Saito

Progress in Scale Modeling, an International Journal

We conducted volume of fluids (VOF) multiphase model numerical simulations to obtain the interaction among all the major governing forces identified in our previous paper. Our numerical experiments are intended to assess the droplet generation process and the jetting behavior by providing specific input conditions, offering CFD as a tool to study scaling correlations instead of physical experiments. Water droplets that can represent waterborne paints were generated by piezo-generated sinusoidal waveforms at the inlet of the nozzle. The governing forces included the external piezo-based wave-generation force, the inertial force of droplets, the inertial force of air, the viscose force of …


Laboratory Evaluation Of A Novel Self-Healable Polymer Gel For Co2 Leakage Remediation During Co2 Storage And Co2 Flooding, Tao Song, Zhanmiao Zhai, Junchen Liu, Yugandhara Eriyagama, Mohamed Ahdaya, Adel Alotibi, Ze Wang, Thomas P. Schuman, Baojun Bai 2022 Missouri University of Science and Technology

Laboratory Evaluation Of A Novel Self-Healable Polymer Gel For Co2 Leakage Remediation During Co2 Storage And Co2 Flooding, Tao Song, Zhanmiao Zhai, Junchen Liu, Yugandhara Eriyagama, Mohamed Ahdaya, Adel Alotibi, Ze Wang, Thomas P. Schuman, Baojun Bai

Chemistry Faculty Research & Creative Works

For CO2 storage in subsurface reservoirs, one of the most crucial requirements is the ability to remediate the leakage caused by the natural fractures or newly generated fractures due to the increasing pore pressure associated with CO2 injection. For CO2 Enhanced Oil Recovery (EOR), high conductivity features such as fractures and void space conduits can severely restrict the CO2 sweep efficiency. Polymer gels have been developed to plug the leakage and improve the sweep efficiency. This work evaluated a CO2 resistant branched self-healable preformed particle gel (CO2-BRPPG) for CO2 plugging purpose. This …


Long-Time Kinetic Impact On Key Factors Affecting Asphaltene Precipitation, Ato Kwamena Quainoo, Abdulmohsin Imqam 2022 Missouri University of Science and Technology

Long-Time Kinetic Impact On Key Factors Affecting Asphaltene Precipitation, Ato Kwamena Quainoo, Abdulmohsin Imqam

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The employment of predictive techniques combining kinetic and thermodynamic analyses is the succinct solution to effectively control asphaltene precipitation during crude oil production. Although thermodynamic processes and conditions have been well studied in the literature, the effect of long-time kinetics on the key factors affecting the precipitation of asphaltenes was not critically studied. This work employed a model oil for asphaltene precipitation long-time kinetic observations. Filtration and confocal microscopy experimentations for time periods of 0-7200 min were utilized to study asphaltene yields and sizes at room and high temperatures (25, 50, and 70 °C), rotation speeds (60 and 150 rpm), …


A Comprehensive Review Of Experimental Evaluation Methods And Results Of Polymer Micro/Nanogels For Enhanced Oil Recovery And Reduced Water Production, Junchen Liu, Abdulaziz Almakimi, Mingzhen Wei, Baojun Bai, Ibnelwaleed Ali Hussein 2022 Missouri University of Science and Technology

A Comprehensive Review Of Experimental Evaluation Methods And Results Of Polymer Micro/Nanogels For Enhanced Oil Recovery And Reduced Water Production, Junchen Liu, Abdulaziz Almakimi, Mingzhen Wei, Baojun Bai, Ibnelwaleed Ali Hussein

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

In recent years, polymer micro/nanogels which are re-crosslinked polymers with 3D networks, have attracted a lot of interest in Enhanced Oil Recovery (EOR) field. In size of micro/nanometers, these gel particles are designed to be conformance control agents for in-depth fluid diversion, and various experimental research have been undertaken to investigate the possibilities of applying micro/nanogels in oilfield. However, it is still unclear that how to utilize micro/nanogels to their full potential in oilfield because the transport mechanisms and EOR mechanisms of micro/nanogels are not well studied currently. By reviewing experimental evaluations and corresponding results of micro/nanogels, including evaluation of …


Reduced Building Energy Consumption By Combined Indoor Co2 And H2o Composition Control, Anshuman Sinha, Harshul Thakkar, Fateme Rezaei, Yoshiaki Kawajiri, Matthew J. Realff 2022 Missouri University of Science and Technology

Reduced Building Energy Consumption By Combined Indoor Co2 And H2o Composition Control, Anshuman Sinha, Harshul Thakkar, Fateme Rezaei, Yoshiaki Kawajiri, Matthew J. Realff

Chemical and Biochemical Engineering Faculty Research & Creative Works

Rapid growth in global energy consumption has raised concern on the environmental impacts such as ozone layer depletion and climate change. Enclosed space, such as commercial buildings, accounts for about 40% of global energy consumption and the demand is constantly increasing due to increasing population, urbanization, and economic development. The energy demands in the building sector calls for strategic measures to develop energy efficient technologies. This paper presents a strategy to decrease energy demands inside buildings by proposing a ventilation system which regulates the enclosed air quality resulting in reduced air conditioning. The system consists of multiple adsorption beds with …


Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei 2022 Missouri University of Science and Technology

Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this work, Pt nanoparticles were loaded on SiO2, TiO2-thin-film-modified SiO2 (TiO2-SiO2), or ZrO2-thin-film-modified SiO2 (ZrO2-SiO2) particles and the composites were investigated for sequential adsorption and desorption/catalytic oxidation of benzene. The SiO2 was prepared via sol–gel method, while TiO2-SiO2 and ZrO2-SiO2 were synthesized via atomic layer deposition (ALD) thin film coating of TiO2 or ZrO2 on SiO2 particles substrate. In the sequential capture-reaction tests, the materials were first exposed to ca. 500 ppmv benzene …


Digital Commons powered by bepress